Skip to content

Commit

Permalink
Merge pull request #7 from dijopaul/main
Browse files Browse the repository at this point in the history
Adding add sub mul and div optimizations
  • Loading branch information
cad-audio authored Sep 19, 2024
2 parents 8ef6c79 + 4ed8bd6 commit 71d78a1
Show file tree
Hide file tree
Showing 11 changed files with 2,874 additions and 13 deletions.
4 changes: 4 additions & 0 deletions backends/cadence/hifi/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,10 @@ add_library(
cadence_kernels
kernels.cpp
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/matmul_asym8uxasym8u_asym8u.cpp
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_add_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_div_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_div_mode_f32_broadcast.c
${EXECUTORCH_ROOT}/backends/cadence/hifi/third-party/nnlib/xa_nn_elm_mul_f32_broadcast.c
)

target_include_directories(
Expand Down
40 changes: 40 additions & 0 deletions backends/cadence/hifi/kernels/kernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,46 @@
#include <stddef.h>
#include <xa_type_def.h>

/* For NNLIB APIs */
#include "xa_nnlib_kernels_api.h"

/* Potential NNLIB function/APIs */
extern "C" WORD32 xa_nn_elm_add_broadcast_4D_f32xf32_f32(FLOAT32 * __restrict__ p_out,
const WORD32 *const p_out_shape,
const FLOAT32 * __restrict__ p_inp1,
const WORD32 *const p_inp1_shape,
const FLOAT32 * __restrict__ p_inp2,
const WORD32 *const p_inp2_shape);

extern "C" WORD32 xa_nn_elm_div_broadcast_4D_f32xf32_f32(FLOAT32 * __restrict__ p_out,
const WORD32 *const p_out_shape,
const FLOAT32 * __restrict__ p_inp1,
const WORD32 *const p_inp1_shape,
const FLOAT32 * __restrict__ p_inp2,
const WORD32 *const p_inp2_shape);

extern "C" WORD32 xa_nn_elm_div_mode_f32xf32_f32(FLOAT32 * __restrict__ p_out,
const FLOAT32 * __restrict__ p_inp1,
const FLOAT32 * __restrict__ p_inp2,
WORD32 num_elm,
WORD32 mode);

extern "C" WORD32 xa_nn_elm_div_mode_broadcast_4D_f32xf32_f32(
FLOAT32 * __restrict__ p_out,
const WORD32 *const p_out_shape,
const FLOAT32 * __restrict__ p_inp1,
const WORD32 *const p_inp1_shape,
const FLOAT32 * __restrict__ p_inp2,
const WORD32 *const p_inp2_shape,
WORD32 mode);

extern "C" WORD32 xa_nn_elm_mul_broadcast_4D_f32xf32_f32(FLOAT32 * __restrict__ p_out,
const WORD32 *const p_out_shape,
const FLOAT32 * __restrict__ p_inp1,
const WORD32 *const p_inp1_shape,
const FLOAT32 * __restrict__ p_inp2,
const WORD32 *const p_inp2_shape);

namespace impl {
namespace HiFi {
namespace kernels {
Expand Down
26 changes: 13 additions & 13 deletions backends/cadence/hifi/operators/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,32 +20,32 @@ endif()

# ATen compliant ops that are needed to run this model.
set(_aten_ops__srcs
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/activation_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/copy_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/broadcast_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/index_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/kernel_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/matmul_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/reduce_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/repeat_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_add.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_add.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_div.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_mul.cpp"
"${EXECUTORCH_ROOT}/backends/cadence/hifi/operators/op_sub.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_bmm.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_cat.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_clone.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_div.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_embedding.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_full.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_mul.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_permute_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_sigmoid.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_slice_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_softmax.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_split_with_sizes_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_sub.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_to_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_view_copy.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/op_where.cpp"
)
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/activation_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/broadcast_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/copy_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/index_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/kernel_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/matmul_ops_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/reduce_util.cpp"
"${EXECUTORCH_ROOT}/kernels/portable/cpu/util/repeat_util.cpp"
)
add_library(aten_ops_cadence ${_aten_ops__srcs})
target_link_libraries(aten_ops_cadence PUBLIC executorch)
target_link_libraries(aten_ops_cadence PRIVATE cadence_kernels)
Expand Down
123 changes: 123 additions & 0 deletions backends/cadence/hifi/operators/op_add.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <executorch/kernels/portable/cpu/scalar_utils.h>
#include <executorch/kernels/portable/cpu/util/broadcast_util.h>
#include <executorch/kernels/portable/cpu/util/functional_util.h>
#include <executorch/runtime/kernel/kernel_includes.h>
#include <executorch/runtime/platform/assert.h>
#include "kernels.h"

namespace torch {
namespace executor {
namespace native {

#define NNLIB_MAX_DIM 4 /* Add fallback if broadcast and dim > 4 */

Tensor& add_out(
RuntimeContext& ctx,
const Tensor& a,
const Tensor& b,
const Scalar& alpha,
Tensor& out) {
(void)ctx;

ScalarType a_type = a.scalar_type();
ScalarType b_type = b.scalar_type();
ScalarType common_type = promoteTypes(a_type, b_type);
ScalarType out_type = out.scalar_type();

ET_CHECK_MSG(a_type == ScalarType::Float, "Input tensor not a float.\n");
ET_CHECK_MSG(b_type == ScalarType::Float, "Input tensor not a float.\n");
ET_CHECK_MSG(out_type == ScalarType::Float, "Output tensor not a float.\n");

ET_CHECK(canCast(common_type, out_type));

using CTYPE_A = float;
using CTYPE_B = float;
using CTYPE_IN = float;
using CTYPE_OUT = float;
CTYPE_IN alpha_val;
ET_EXTRACT_SCALAR(alpha, alpha_val);

int a_dim = a.dim(), b_dim = b.dim(), out_dim = out.dim();
int fall_back = 0;
/*find broadcast*/
const int a_is_broadcasted = !out.sizes().equals(a.sizes());
const int b_is_broadcasted = !out.sizes().equals(b.sizes());
const int broadcast = (a_is_broadcasted || b_is_broadcasted);
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim();
max_dim = out.dim() > max_dim ? out.dim() : max_dim;

if( (out_type != ScalarType::Float) || (alpha_val != 1.0))
fall_back = 1;

if( (a_dim == 0) || (b_dim == 0) )
fall_back = 1;

if((broadcast == 1) && (max_dim > NNLIB_MAX_DIM))
fall_back = 1;


if (!fall_back)
{
const float* const a_data = a.const_data_ptr<float>();
const float* const b_data = b.const_data_ptr<float>();
float* const out_data = out.mutable_data_ptr<float>();
if(broadcast == 1)
{
int out_shape[NNLIB_MAX_DIM];
int inp1_shape[NNLIB_MAX_DIM];
int inp2_shape[NNLIB_MAX_DIM];

for(int i = 0; i < NNLIB_MAX_DIM; i++)
{
out_shape[i] = 1;
inp1_shape[i] = 1;
inp2_shape[i] = 1;
}

int off_o = NNLIB_MAX_DIM - out.dim();
int off_a = NNLIB_MAX_DIM - a.dim();
int off_b = NNLIB_MAX_DIM - b.dim();

for(int i = 0; i < out.dim(); i++)
out_shape[i+off_o] = out.size(i);
for(int i = 0; i < a.dim(); i++)
inp1_shape[i+off_a] = a.size(i);
for(int i = 0; i < b.dim(); i++)
inp2_shape[i+off_b] = b.size(i);

xa_nn_elm_add_broadcast_4D_f32xf32_f32(out_data, out_shape, a_data, inp1_shape,
b_data, inp2_shape);
}
else
xa_nn_elm_add_f32xf32_f32(out_data, a_data, b_data, out.numel());

}
else
{
apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>(
[alpha_val](const CTYPE_A val_a, const CTYPE_B val_b) {
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a);
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b);
CTYPE_IN value = a_casted + alpha_val * b_casted;

return static_cast<CTYPE_OUT>(value);
},
a,
b,
out);
}

return out;
}

} // namespace native
} // namespace executor
} // namespace torch
Loading

0 comments on commit 71d78a1

Please sign in to comment.