forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #7 from dijopaul/main
Adding add sub mul and div optimizations
- Loading branch information
Showing
11 changed files
with
2,874 additions
and
13 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <executorch/kernels/portable/cpu/scalar_utils.h> | ||
#include <executorch/kernels/portable/cpu/util/broadcast_util.h> | ||
#include <executorch/kernels/portable/cpu/util/functional_util.h> | ||
#include <executorch/runtime/kernel/kernel_includes.h> | ||
#include <executorch/runtime/platform/assert.h> | ||
#include "kernels.h" | ||
|
||
namespace torch { | ||
namespace executor { | ||
namespace native { | ||
|
||
#define NNLIB_MAX_DIM 4 /* Add fallback if broadcast and dim > 4 */ | ||
|
||
Tensor& add_out( | ||
RuntimeContext& ctx, | ||
const Tensor& a, | ||
const Tensor& b, | ||
const Scalar& alpha, | ||
Tensor& out) { | ||
(void)ctx; | ||
|
||
ScalarType a_type = a.scalar_type(); | ||
ScalarType b_type = b.scalar_type(); | ||
ScalarType common_type = promoteTypes(a_type, b_type); | ||
ScalarType out_type = out.scalar_type(); | ||
|
||
ET_CHECK_MSG(a_type == ScalarType::Float, "Input tensor not a float.\n"); | ||
ET_CHECK_MSG(b_type == ScalarType::Float, "Input tensor not a float.\n"); | ||
ET_CHECK_MSG(out_type == ScalarType::Float, "Output tensor not a float.\n"); | ||
|
||
ET_CHECK(canCast(common_type, out_type)); | ||
|
||
using CTYPE_A = float; | ||
using CTYPE_B = float; | ||
using CTYPE_IN = float; | ||
using CTYPE_OUT = float; | ||
CTYPE_IN alpha_val; | ||
ET_EXTRACT_SCALAR(alpha, alpha_val); | ||
|
||
int a_dim = a.dim(), b_dim = b.dim(), out_dim = out.dim(); | ||
int fall_back = 0; | ||
/*find broadcast*/ | ||
const int a_is_broadcasted = !out.sizes().equals(a.sizes()); | ||
const int b_is_broadcasted = !out.sizes().equals(b.sizes()); | ||
const int broadcast = (a_is_broadcasted || b_is_broadcasted); | ||
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim(); | ||
max_dim = out.dim() > max_dim ? out.dim() : max_dim; | ||
|
||
if( (out_type != ScalarType::Float) || (alpha_val != 1.0)) | ||
fall_back = 1; | ||
|
||
if( (a_dim == 0) || (b_dim == 0) ) | ||
fall_back = 1; | ||
|
||
if((broadcast == 1) && (max_dim > NNLIB_MAX_DIM)) | ||
fall_back = 1; | ||
|
||
|
||
if (!fall_back) | ||
{ | ||
const float* const a_data = a.const_data_ptr<float>(); | ||
const float* const b_data = b.const_data_ptr<float>(); | ||
float* const out_data = out.mutable_data_ptr<float>(); | ||
if(broadcast == 1) | ||
{ | ||
int out_shape[NNLIB_MAX_DIM]; | ||
int inp1_shape[NNLIB_MAX_DIM]; | ||
int inp2_shape[NNLIB_MAX_DIM]; | ||
|
||
for(int i = 0; i < NNLIB_MAX_DIM; i++) | ||
{ | ||
out_shape[i] = 1; | ||
inp1_shape[i] = 1; | ||
inp2_shape[i] = 1; | ||
} | ||
|
||
int off_o = NNLIB_MAX_DIM - out.dim(); | ||
int off_a = NNLIB_MAX_DIM - a.dim(); | ||
int off_b = NNLIB_MAX_DIM - b.dim(); | ||
|
||
for(int i = 0; i < out.dim(); i++) | ||
out_shape[i+off_o] = out.size(i); | ||
for(int i = 0; i < a.dim(); i++) | ||
inp1_shape[i+off_a] = a.size(i); | ||
for(int i = 0; i < b.dim(); i++) | ||
inp2_shape[i+off_b] = b.size(i); | ||
|
||
xa_nn_elm_add_broadcast_4D_f32xf32_f32(out_data, out_shape, a_data, inp1_shape, | ||
b_data, inp2_shape); | ||
} | ||
else | ||
xa_nn_elm_add_f32xf32_f32(out_data, a_data, b_data, out.numel()); | ||
|
||
} | ||
else | ||
{ | ||
apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>( | ||
[alpha_val](const CTYPE_A val_a, const CTYPE_B val_b) { | ||
CTYPE_IN a_casted = static_cast<CTYPE_IN>(val_a); | ||
CTYPE_IN b_casted = static_cast<CTYPE_IN>(val_b); | ||
CTYPE_IN value = a_casted + alpha_val * b_casted; | ||
|
||
return static_cast<CTYPE_OUT>(value); | ||
}, | ||
a, | ||
b, | ||
out); | ||
} | ||
|
||
return out; | ||
} | ||
|
||
} // namespace native | ||
} // namespace executor | ||
} // namespace torch |
Oops, something went wrong.