forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a3581f1
commit 792c3a1
Showing
6 changed files
with
1,012 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <executorch/kernels/portable/cpu/util/broadcast_util.h> | ||
#include <executorch/kernels/portable/cpu/util/functional_util.h> | ||
#include <executorch/runtime/kernel/kernel_includes.h> | ||
#include <executorch/backends/cadence/hifi/kernels/kernels.h> | ||
|
||
using exec_aten::ScalarType; | ||
using exec_aten::Tensor; | ||
using torch::executor::Error; | ||
using executorch::aten::RuntimeContext; | ||
|
||
namespace impl { | ||
namespace HiFi { | ||
namespace native { | ||
|
||
Tensor& where_out( | ||
RuntimeContext& ctx, | ||
const Tensor& cond, | ||
const Tensor& a, | ||
const Tensor& b, | ||
Tensor& out) { | ||
ScalarType cond_type = cond.scalar_type(); | ||
ScalarType a_type = a.scalar_type(); | ||
ScalarType b_type = b.scalar_type(); | ||
ScalarType common_type = promoteTypes(a_type, b_type); | ||
ScalarType out_type = out.scalar_type(); | ||
|
||
ET_KERNEL_CHECK(ctx, common_type == out_type, InvalidArgument, out); | ||
|
||
// Determine output size and resize for dynamic shapes | ||
ET_KERNEL_CHECK( | ||
ctx, | ||
resize_to_broadcast_target_size(a, b, cond, out) == Error::Ok, | ||
InvalidArgument, | ||
out); | ||
|
||
constexpr int kNnlibMaxDim = 4; /*fallback if broadcast and dim > 4 */ | ||
constexpr auto name = "where.self_out"; | ||
|
||
ET_CHECK_MSG( | ||
cond_type == ScalarType::Bool || cond_type == ScalarType::Byte, | ||
"Unhandled dtype %s for where.self_out", | ||
torch::executor::toString(cond_type)); | ||
|
||
int a_dim = a.dim(), b_dim = b.dim(), con_dim = cond.dim(), out_dim = out.dim(); | ||
bool optimized = 1; | ||
/*find broadcast*/ | ||
const bool a_is_broadcasted = !out.sizes().equals(a.sizes()); | ||
const bool b_is_broadcasted = !out.sizes().equals(b.sizes()); | ||
const bool cond_is_broadcasted = !out.sizes().equals(cond.sizes()); | ||
const bool broadcast = (a_is_broadcasted || b_is_broadcasted || cond_is_broadcasted); | ||
|
||
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim(); | ||
max_dim = cond.dim() > max_dim ? cond.dim() : max_dim; | ||
max_dim = out.dim() > max_dim ? out.dim() : max_dim; | ||
|
||
if((a_type != ScalarType::Float) || (b_type != ScalarType::Float)) | ||
optimized = 0; | ||
|
||
if((a_dim == 0) || (b_dim == 0) || (con_dim == 0)) | ||
optimized = 0; | ||
|
||
if((broadcast == 1) && (max_dim > kNnlibMaxDim)) | ||
optimized = 0; | ||
|
||
if(optimized) | ||
{ | ||
const float* a_data = a.const_data_ptr<float>(); | ||
const float* b_data = b.const_data_ptr<float>(); | ||
float* out_data = out.mutable_data_ptr<float>(); | ||
const unsigned char* con = cond.const_data_ptr<uint8_t>(); | ||
|
||
if(broadcast == 1) | ||
{ | ||
int out_shape[kNnlibMaxDim]; | ||
int inp1_shape[kNnlibMaxDim]; | ||
int inp2_shape[kNnlibMaxDim]; | ||
int con_shape[kNnlibMaxDim]; | ||
|
||
for(int i = 0; i < kNnlibMaxDim; i++) | ||
{ | ||
con_shape[i] = 1; | ||
out_shape[i] = 1; | ||
inp1_shape[i] = 1; | ||
inp2_shape[i] = 1; | ||
} | ||
|
||
int off_o = kNnlibMaxDim - out.dim(); | ||
int off_a = kNnlibMaxDim - a.dim(); | ||
int off_b = kNnlibMaxDim - b.dim(); | ||
int off_c = kNnlibMaxDim - cond.dim(); | ||
|
||
for(int i = 0; i < out.dim(); i++) | ||
out_shape[i+off_o] = out.size(i); | ||
for(int i = 0; i < a.dim(); i++) | ||
inp1_shape[i+off_a] = a.size(i); | ||
for(int i = 0; i < b.dim(); i++) | ||
inp2_shape[i+off_b] = b.size(i); | ||
for(int i = 0; i < cond.dim(); i++) | ||
con_shape[i+off_c] = cond.size(i); | ||
|
||
if(con_shape[0] != out_shape[0] || con_shape[1] != out_shape[1] || con_shape[2] != out_shape[2] || con_shape[3] != out_shape[3]) | ||
{ | ||
void* p_scratch = malloc(out_shape[0]*out_shape[1]*out_shape[2]*out_shape[3]); | ||
const unsigned char *p_brd_cond = (const unsigned char*)p_scratch; | ||
xa_nn_broadcast_8_8((WORD8* __restrict__) p_brd_cond, out_shape, (const WORD8* __restrict__) con, con_shape, 4); | ||
|
||
for(int i = 0; i < 4; i++) | ||
{ | ||
con_shape[i] = out_shape[i]; | ||
} | ||
xa_nn_elm_where_broadcast_4D_f32xf32_f32(out_data, out_shape, a_data, inp1_shape, | ||
b_data, inp2_shape, p_brd_cond, con_shape); | ||
free(p_scratch); | ||
} | ||
else | ||
{ | ||
xa_nn_elm_where_broadcast_4D_f32xf32_f32(out_data, out_shape, a_data, inp1_shape, b_data, inp2_shape, con, con_shape); | ||
} | ||
} | ||
else | ||
{ | ||
xa_nn_elm_where_f32xf32_f32(out_data, a_data, b_data, con, out.numel()); | ||
} | ||
return out; | ||
} | ||
ET_SWITCH_REALHB_TYPES(a_type, ctx, name, CTYPE_A, [&]() { | ||
ET_SWITCH_REALHB_TYPES(b_type, ctx, name, CTYPE_B, [&]() { | ||
using CTYPE_OUT = typename torch::executor::promote_types<CTYPE_A, CTYPE_B>::type; | ||
torch::executor::apply_ternary_elementwise_fn<CTYPE_A, CTYPE_B, uint8_t, CTYPE_OUT>( | ||
[](const CTYPE_A val_a, const CTYPE_B val_b, const uint8_t val_c) { | ||
CTYPE_OUT a_casted = static_cast<CTYPE_OUT>(val_a); | ||
CTYPE_OUT b_casted = static_cast<CTYPE_OUT>(val_b); | ||
return val_c ? a_casted : b_casted; | ||
}, | ||
a, | ||
b, | ||
cond, | ||
out); | ||
}); | ||
}); | ||
return out; | ||
} | ||
|
||
} // namespace native | ||
} // namespace HiFi | ||
} // namespace impl | ||
|
Oops, something went wrong.