forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding atan2 operator kernel optimization
- Loading branch information
Showing
6 changed files
with
537 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
/* | ||
* Copyright (c) Meta Platforms, Inc. and affiliates. | ||
* All rights reserved. | ||
* | ||
* This source code is licensed under the BSD-style license found in the | ||
* LICENSE file in the root directory of this source tree. | ||
*/ | ||
|
||
#include <executorch/backends/cadence/hifi/kernels/kernels.h> | ||
#include <executorch/kernels/portable/cpu/util/broadcast_util.h> | ||
#include <executorch/runtime/kernel/kernel_includes.h> | ||
#include <cmath> | ||
|
||
using exec_aten::ScalarType; | ||
using exec_aten::Tensor; | ||
using executorch::runtime::KernelRuntimeContext; | ||
using torch::executor::Error; | ||
|
||
namespace impl { | ||
namespace HiFi { | ||
namespace native { | ||
|
||
Tensor& atan2_out( | ||
KernelRuntimeContext& ctx, | ||
const Tensor& a, | ||
const Tensor& b, | ||
Tensor& out) { | ||
// Determine output size and resize for dynamic shapes | ||
ET_KERNEL_CHECK( | ||
ctx, | ||
resize_to_broadcast_target_size(a, b, out) == Error::Ok, | ||
InvalidArgument, | ||
out); | ||
|
||
ET_KERNEL_CHECK( | ||
ctx, tensors_have_same_dim_order(a, b, out), InvalidArgument, out); | ||
|
||
ScalarType a_type = a.scalar_type(); | ||
ScalarType b_type = b.scalar_type(); | ||
ScalarType out_type = out.scalar_type(); | ||
|
||
constexpr auto name = "atan2.out"; | ||
constexpr int kNnlibMaxDim = 16; | ||
int a_dim = a.dim(), b_dim = b.dim(), out_dim = out.dim(); | ||
bool optimized = 1; | ||
|
||
const bool a_is_broadcasted = !out.sizes().equals(a.sizes()); | ||
const bool b_is_broadcasted = !out.sizes().equals(b.sizes()); | ||
const bool broadcast = (a_is_broadcasted || b_is_broadcasted); | ||
int max_dim = a.dim() > b.dim() ? a.dim() : b.dim(); | ||
max_dim = out.dim() > max_dim ? out.dim() : max_dim; | ||
|
||
if (out_type != ScalarType::Float) | ||
optimized = 0; | ||
|
||
if ((broadcast == 1) && (max_dim > kNnlibMaxDim)) | ||
optimized = 0; | ||
|
||
WORD32 num_elm = out.numel(); | ||
|
||
if (!optimized) { | ||
if (broadcast) { | ||
WORD32* __restrict__ ptr1 = | ||
(WORD32* __restrict__)malloc(num_elm * sizeof(WORD32)); | ||
WORD32* __restrict__ ptr2 = | ||
(WORD32* __restrict__)malloc(num_elm * sizeof(WORD32)); | ||
|
||
WORD32* __restrict__ pin1 = | ||
(WORD32* __restrict__)a.const_data_ptr<float>(); | ||
WORD32* __restrict__ pin2 = | ||
(WORD32* __restrict__)b.const_data_ptr<float>(); | ||
|
||
WORD32 p_out_shape[max_dim]; | ||
WORD32 p_inp1_shape[max_dim]; | ||
WORD32 p_inp2_shape[max_dim]; | ||
|
||
for (int i = 0; i < kNnlibMaxDim; i++) { | ||
p_inp1_shape[i] = 1; | ||
p_inp2_shape[i] = 1; | ||
p_out_shape[i] = 1; | ||
} | ||
|
||
int off_o = max_dim - out_dim; | ||
int off_a = max_dim - a_dim; | ||
int off_b = max_dim - b_dim; | ||
|
||
for (int i = 0; i < out_dim; i++) | ||
p_out_shape[i + off_o] = out.size(i); | ||
for (int i = 0; i < a_dim; i++) | ||
p_inp1_shape[i + off_a] = a.size(i); | ||
for (int i = 0; i < b_dim; i++) | ||
p_inp2_shape[i + off_b] = b.size(i); | ||
|
||
xa_nn_broadcast_32_32(ptr1, p_out_shape, pin1, p_inp1_shape, out_dim); | ||
|
||
xa_nn_broadcast_32_32(ptr2, p_out_shape, pin2, p_inp2_shape, out_dim); | ||
|
||
FLOAT32* __restrict__ p_out = | ||
(FLOAT32* __restrict__)out.mutable_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp1 = (const FLOAT32* __restrict__)ptr1; | ||
const FLOAT32* __restrict__ p_inp2 = (const FLOAT32* __restrict__)ptr2; | ||
|
||
vecatan2f(p_out, p_inp1, p_inp2, num_elm); | ||
|
||
free(ptr1); | ||
free(ptr2); | ||
} else if (a_is_broadcasted && (!b_is_broadcasted)) { | ||
FLOAT32* __restrict__ ptr1 = | ||
(FLOAT32* __restrict__)malloc(num_elm * sizeof(WORD32)); | ||
|
||
FLOAT32* __restrict__ pin1 = | ||
(FLOAT32* __restrict__)a.const_data_ptr<float>(); | ||
|
||
WORD32 p_out_shape[max_dim]; | ||
WORD32 p_inp1_shape[max_dim]; | ||
|
||
for (int i = 0; i < max_dim; i++) { | ||
p_inp1_shape[i] = 1; | ||
p_out_shape[i] = 1; | ||
} | ||
|
||
int off_o = max_dim - out_dim; | ||
int off_a = max_dim - a_dim; | ||
|
||
for (int i = 0; i < out_dim; i++) | ||
p_out_shape[i + off_o] = out.size(i); | ||
for (int i = 0; i < a_dim; i++) | ||
p_inp1_shape[i + off_a] = a.size(i); | ||
|
||
xa_nn_broadcast_32_32( | ||
(WORD32*)ptr1, p_out_shape, (WORD32*)pin1, p_inp1_shape, out_dim); | ||
|
||
FLOAT32* __restrict__ p_out = | ||
(FLOAT32* __restrict__)out.mutable_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp1 = (const FLOAT32* __restrict__)ptr1; | ||
const FLOAT32* __restrict__ p_inp2 = | ||
(const FLOAT32* __restrict__)b.const_data_ptr<float>(); | ||
|
||
vecatan2f(p_out, p_inp1, p_inp2, num_elm); | ||
|
||
free(ptr1); | ||
} else if (b_is_broadcasted && (!a_is_broadcasted)) { | ||
WORD32* __restrict__ ptr1 = | ||
(WORD32* __restrict__)malloc(num_elm * sizeof(WORD32)); | ||
|
||
WORD32* __restrict__ pin1 = | ||
(WORD32* __restrict__)b.const_data_ptr<float>(); | ||
|
||
WORD32 p_out_shape[max_dim]; | ||
WORD32 p_inp1_shape[max_dim]; | ||
|
||
for (int i = 0; i < max_dim; i++) { | ||
p_inp1_shape[i] = 1; | ||
p_out_shape[i] = 1; | ||
} | ||
|
||
int off_o = max_dim - out_dim; | ||
int off_b = max_dim - b_dim; | ||
|
||
for (int i = 0; i < out_dim; i++) | ||
p_out_shape[i + off_o] = out.size(i); | ||
for (int i = 0; i < b_dim; i++) | ||
p_inp1_shape[i + off_b] = b.size(i); | ||
|
||
xa_nn_broadcast_32_32(ptr1, p_out_shape, pin1, p_inp1_shape, out_dim); | ||
|
||
FLOAT32* __restrict__ p_out = | ||
(FLOAT32* __restrict__)out.mutable_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp1 = | ||
(const FLOAT32* __restrict__)a.const_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp2 = (const FLOAT32* __restrict__)ptr1; | ||
|
||
vecatan2f(p_out, p_inp1, p_inp2, num_elm); | ||
|
||
free(ptr1); | ||
} else { | ||
FLOAT32* __restrict__ p_out = | ||
(FLOAT32* __restrict__)out.mutable_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp1 = | ||
(const FLOAT32* __restrict__)a.const_data_ptr<float>(); | ||
const FLOAT32* __restrict__ p_inp2 = | ||
(const FLOAT32* __restrict__)b.const_data_ptr<float>(); | ||
|
||
vecatan2f(p_out, p_inp1, p_inp2, num_elm); | ||
} | ||
return out; | ||
} | ||
|
||
ET_SWITCH_REALHB_TYPES(a_type, ctx, name, CTYPE_A, [&]() { | ||
ET_SWITCH_REALHB_TYPES(b_type, ctx, name, CTYPE_B, [&]() { | ||
ET_SWITCH_FLOATH_TYPES(out_type, ctx, name, CTYPE_OUT, [&]() { | ||
torch::executor:: | ||
apply_binary_elementwise_fn<CTYPE_A, CTYPE_B, CTYPE_OUT>( | ||
[](const CTYPE_A val_a, const CTYPE_B val_b) { | ||
CTYPE_OUT casted_a = static_cast<CTYPE_OUT>(val_a); | ||
CTYPE_OUT casted_b = static_cast<CTYPE_OUT>(val_b); | ||
return static_cast<CTYPE_OUT>(std::atan2(casted_a, casted_b)); | ||
}, | ||
a, | ||
b, | ||
out); | ||
}); | ||
}); | ||
}); | ||
|
||
return out; | ||
} | ||
|
||
} // namespace native | ||
} // namespace HiFi | ||
} // namespace impl |
Oops, something went wrong.