- W-TALC (ECCV18) W-TALC: Weakly-supervised Temporal Activity Localization and Classification tensorflow, pytorch
- STPN (CVPR18) Weakly Supervised Action Localization by Sparse Temporal Pooling Network tensorflow, pytorch
- ASSG (ACM19) Adversarial Seeded Sequence Growing for Weakly-Supervised Temporal Action Localization
- TSM (ICCV19) Temporal Structure Mining for Weakly Supervised Action Detection
- STAR (AAAI19) Segregated Temporal Assembly Recurrent Networks for Weakly Supervised Multiple Action Detection
- 3C-Net (ICCV19) 3C-Net: Category Count and Center Loss for Weakly-Supervised Action Localization pytorch
- CMCS (CVPR19) Completeness Modeling and Context Separation for Weakly Supervised Temporal Action Localization pytorch
- MAAN (ICLR19) Marginalized Average Attentional Network for Weakly-Supervised Learning pytorch
- Nguyen et al. (ICCV19) Weakly-supervised Action Localization with Background Modeling
- CleanNet (ICCV19) Weakly Supervised Temporal Action Localization Through Contrast Based Evaluation Networks
- BaSNet (AAAI20) Background Suppression Network for Weakly-supervised Temporal Action Localization pytorch
- RPN (AAAI20) Relational Prototypical Network for Weakly Supervised Temporal Action Localization
- WSGN (WACV20) Weakly Supervised Gaussian Networks for Action Detection
- WSAD (WACV20) Weakly Supervised Temporal Action Localization Using Deep Metric Learning pytorch
- DGAM (CVPR20) Weakly-Supervised Action Localization by Generative Attention Modeling pytorch
- EM-MIL Weakly-Supervised Action Localization with Expectation-Maximization Multi-Instance Learning
- ACL Learning Temporal Co-Attention Models for Unsupervised Video Action Localization
- BMUE Background Modeling via Uncertainty Estimation for Weakly-supervised Action Localization pytorch
- S-CNN (CVPR16) Temporal Action Localization in Untrimmed Videos via Multi-stage CNNs caffe
- P-GCN (ICCV19) Graph Convolutional Networks for Temporal Action Localization pytorch
- C-TCN (ICCV19) Deep Concept-wise Temporal Convolutional Networks for Action Localization
- Joshua et al. (WACV20) Activity Detection in Untrimmed Videos Using Chunk-based Classifiers
- Thumos14 data download : link
- C3D feature : link
- I3D feature : link1(from here) or link2(from here)
- extraction code : link2
# link2
├── THUMOS14
├── gt.json
├── split_train.txt
├── split_test.txt
└── features
├── train
├── rgb
├── video_validation_0000051.npy
├── video_validation_0000052.npy
└── ...
└── flow
├── video_validation_0000051.npy
├── video_validation_0000052.npy
└── ...
└── test
├── rgb
├── video_test_0000004.npy
├── video_test_0000006.npy
└── ...
└── flow
├── video_test_0000004.npy
├── video_test_0000006.npy
└── ...
conference | name | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ECCV(2018) | W-TALC | 55.2 | 49.6 | 40.1 | 31.1 | 22.8 | - | 7.6 | - | - | tensor, pytorch |
2 | CVPR(2018) | STPN | 52.0 | 44.7 | 35.5 | 25.8 | 16.9 | 9.9 | 4.3 | 1.2 | 0.1 | tensor, pytorch |
3 | ACM(2019) | ASSG | 65.6 | 59.4 | 50.4 | 38.7 | 25.4 | 15.0 | 6.6 | - | - | |
4 | ICCV(2019) | TSM | - | - | 39.5 | - | 24.5 | - | 7.1 | - | ||
5 | AAAI(2019) | STAR | 68.8 | 60.0 | 48.7 | 34.7 | 23.0 | - | - | - | - | |
6 | ICCV(2019) | 3C-Net | 59.1 | 53.5 | 44.2 | 34.1 | 26.6 | - | 8.1 | - | - | pytorch |
7 | CVPR(2019) | CMCS | 57.4 | 50.8 | 41.2 | 32.1 | 23.1 | 15.0 | 7.0 | - | - | pytorch |
8 | ICLR(2019) | MAAN | 59.8 | 50.8 | 41.1 | 30.6 | 20.3 | 12.0 | 6.9 | - | - | pytorch |
9 | ICCV(2019) | Nguyen et al. | 60.4 | 56.0 | 46.6 | 37.5 | 26.8 | 17.6 | 9.0 | 3.3 | 0.4 | |
10 | ICCV(2019) | CleanNet | - | - | 37.0 | 30.9 | 23.9 | 13.9 | 7.1 | - | - | |
11 | AAAI(2020) | BaSNet | 58.2 | 52.3 | 44.6 | 36.0 | 27.0 | 18.6 | 10.4 | 3.9 | 0.5 | pytorch |
12 | AAAI(2020) | RPN | 62.3 | 57.0 | 48.2 | 37.2 | 27.9 | 16.7 | 8.1 | |||
13 | WACV(2020) | WSGN | ||||||||||
14 | WACV(2020) | WSAD | 62.3 | 46.8 | 29.6 | 9.7 | pytorch | |||||
15 | CVPR(2020) | DGAM | 60.0 | 54.2 | 46.8 | 38.2 | 28.8 | 19.8 | 11.4 | 3.6 | 0.4 | pytorch |
16 | EM-MIL | 59.1 | 52.7 | 45.5 | 36.8 | 30.5 | 22.7 | 16.4 | - | - | ||
17 | ACL | - | - | 46.9 | 38.9 | 30.1 | 19.8 | 10.4 | - | |||
18 | BMUE | - | - | 46.9 | 39.2 | 30.7 | 20.8 | 12.5 | - | - | pytorch |
conference | name | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | code | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | CVPR(2016) | S-CNN | 47.7 | 60.0 | 48.7 | 34.7 | 23.0 | - | - | - | - | caffe |
2 | ICCV(2019) | P-GCN | 69.5 | 67.8 | 63.6 | 57.8 | 49.1 | - | - | - | - | pytorch |
3 | ICCV(2019) | C-TCN | 72.2 | 71.4 | 68.0 | 62.3 | 52.1 | - | - | - | - | |
4 | WACV(2020) | Joshua et al. | 67.41 | 60.0 | 48.7 | 34.7 | 23.0 | - | - | - | - |