Skip to content

Commit

Permalink
use np.nanmean
Browse files Browse the repository at this point in the history
  • Loading branch information
skoudoro committed Aug 22, 2023
1 parent 62370cb commit 67b3416
Showing 1 changed file with 13 additions and 12 deletions.
25 changes: 13 additions & 12 deletions quantconn/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,43 +239,44 @@ def merge(destination: Annotated[Path, typer.Option("--destination", "-dest",
delimiter=',', header=','.join(headers), fmt='%s')

# Start Computing ICC
results_conn = []
results_conn = {}
for metric in conn_mat_header:
df_tmp = df_conn[df_conn['metric'] == metric]
icc_conn = pg.intraclass_corr(data=df_tmp, targets='# subject',
raters='group', ratings='score')
raters='group', ratings='score',
nan_policy='omit')
icc_conn.set_index('Type')
results_conn.append(float(icc_conn.loc[icc_conn['Type'] == 'ICC3',
'ICC']))
results_conn[metric] = float(icc_conn.loc[icc_conn['Type'] == 'ICC3',
'ICC'])

print(f"Connectivity all scores : {results_conn}")
print(f"Connectivity final score : {np.asarray(results_conn).mean()}")
print(f"Connectivity final score : {np.nanmean(np.asarray(list(results_conn.values())))}")
# print(f"Connectivity std : {np.asarray(results_conn).std()}")

df_mm = pd.read_csv(_merging_results_path)
results_mm = []
results_mm = {}
for bundle_metric in headers[2:]:
icc_mm = pg.intraclass_corr(data=df_mm, targets='# subject',
raters='group', ratings=bundle_metric)

icc_mm.set_index('Type')

results_mm.append(float(icc_mm.loc[icc_mm['Type'] == 'ICC3', 'ICC']))
results_mm[bundle_metric] = (float(icc_mm.loc[icc_mm['Type'] == 'ICC3', 'ICC']))

with open(pjoin(destination, '_bundle_metrics_icc_report.csv'), 'w') as fh:
writer = csv.writer(fh, delimiter=',')
writer.writerow(headers[2:])
writer.writerow(results_mm)
writer.writerow(list(results_mm.values()))
print(f"Microstructural measures all scores : {results_mm}")
print(f"Microstructural measures final score : {np.asarray(results_mm).mean()}")
print(f"Microstructural measures final score : {np.nanmean(np.asarray(list(results_mm.values())))}")
# print(f"Microstructural measures std : {np.asarray(results_mm).std()}")

results_ss = []
for metric in ['shape_similarity', 'shape_profile']:
df_tmp = df_ss[df_ss['metric'] == metric]
results_ss.append(df_tmp.score.mean())

print(f"Shape Similarity all scores : {results_ss}")
print(f"Shape all scores : {results_ss}")
print(f"Shape Similarity final score : {results_ss[0]}")
print(f"Shape Profile Final score : {results_ss[1]}")

Expand All @@ -284,8 +285,8 @@ def merge(destination: Annotated[Path, typer.Option("--destination", "-dest",
writer = csv.writer(fh, delimiter=',')
writer.writerow(['Connectivity score', 'Microstructural measures',
'Shape Similarity Score', 'Shape Profile Score'])
writer.writerow([float(np.asarray(results_conn).mean()),
float(np.asarray(results_mm).mean()),
writer.writerow([float(np.nanmean(np.asarray(list(results_conn.values())))),
float(np.nanmean(np.asarray(list(results_mm.values())))),
float(np.asarray(results_ss[0])),
float(results_ss[1])])

Expand Down

0 comments on commit 67b3416

Please sign in to comment.