python=3.8 All the depended packages are listed in requirements.txt
└── task4
├── README.md
├── apps
├── bin
├── configuration
├── data
├── data_man
├── logs
├── metric
├── modeling
└── papers
At first stage, we used all the fields to encode information with transformers-based models. But we found just precise is vital for the model performance.
The best encoder model is roberta-large, compared with bert-base-uncased, bert-large-uncased, albert, etc.
└── task4
├── apps
├── bin
├── configuration
├── data
│ ├── kfold
│ ├── submission -------- 提交文件所在的目录
│ │ └── labels_1.tsv
│ ├── test_data
│ ├── training_data
│ └── validate_data
├── data_man
├── logs
├── metric
├── modeling
└── papers
- 文件名: labels_1.tsv
- 实验参数: baseline_argument_data_module,rewrite_argument_dataset,class_balanced_loss_argument_model,roberta-large,baseline_argument_data_module,rewrite_argument_dataset,class_balanced_loss_argument_model,roberta-large,16,35,val_f1 进行8折交叉验证的结果。