Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add more tests #49

Merged
merged 4 commits into from
Dec 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,3 @@ lints:

format:
hatch run test:format

docs:
cd docs && make html
3 changes: 1 addition & 2 deletions examples/slcp-nass_smcabc.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,6 @@
"""
import argparse

import distrax
import jax
from jax import numpy as jnp
from jax import random as jr
Expand Down Expand Up @@ -39,7 +38,7 @@ def _unpack_params(ps):
return m0, m1, s0, s1, r

m0, m1, s0, s1, r = _unpack_params(theta)
us = distrax.Normal(0.0, 1.0).sample(
us = tfd.Normal(0.0, 1.0).sample(
seed=us_key, sample_shape=(theta.shape[0], theta.shape[1], 4, 2)
)
xs = jnp.empty_like(us)
Expand Down
20 changes: 10 additions & 10 deletions examples/slcp-snle.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@
"""
import argparse

import distrax
import haiku as hk
import jax
import matplotlib.pyplot as plt
import optax
import surjectors
from jax import numpy as jnp
from jax import random as jr
from jax import scipy as jsp
Expand Down Expand Up @@ -49,7 +49,7 @@ def _unpack_params(ps):
return m0, m1, s0, s1, r

m0, m1, s0, s1, r = _unpack_params(theta)
us = distrax.Normal(0.0, 1.0).sample(
us = tfd.Normal(0.0, 1.0).sample(
seed=us_key, sample_shape=(theta.shape[0], theta.shape[1], 4, 2)
)
xs = jnp.empty_like(us)
Expand All @@ -67,13 +67,13 @@ def likelihood_fn(theta, y):
corr = s1 * s2 * jnp.tanh(theta[4])
cov = jnp.array([[s1**2, corr], [corr, s2**2]])
cov = jsp.linalg.block_diag(*[cov for _ in range(4)])
p = distrax.MultivariateNormalFullCovariance(mu, cov)
p = tfd.MultivariateNormalFullCovariance(mu, cov)
return p.log_prob(y)


def log_density_fn(theta, y):
prior_lp = distrax.Independent(
distrax.Uniform(jnp.full(5, -3.0), jnp.full(5, 3.0)), 1
prior_lp = tfd.Independent(
tfd.Uniform(jnp.full(5, -3.0), jnp.full(5, 3.0)), 1
).log_prob(theta)
likelihood_lp = likelihood_fn(theta, y)

Expand All @@ -84,7 +84,7 @@ def log_density_fn(theta, y):
def make_model(dim, use_surjectors):
def _bijector_fn(params):
means, log_scales = unstack(params, -1)
return distrax.ScalarAffine(means, jnp.exp(log_scales))
return surjectors.ScalarAffine(means, jnp.exp(log_scales))

def _decoder_fn(n_dim):
decoder_net = make_mlp(
Expand All @@ -95,8 +95,8 @@ def _decoder_fn(n_dim):
def _fn(z):
params = decoder_net(z)
mu, log_scale = jnp.split(params, 2, -1)
return distrax.Independent(
distrax.Normal(mu, jnp.exp(log_scale)), 1
return tfd.Independent(
tfd.Normal(mu, jnp.exp(log_scale)), 1
)

return _fn
Expand Down Expand Up @@ -140,8 +140,8 @@ def _flow(method, **kwargs):
layers.append(Permutation(order, 1))
chain = Chain(layers)

base_distribution = distrax.Independent(
distrax.Normal(jnp.zeros(n_dimension), jnp.ones(n_dimension)),
base_distribution = tfd.Independent(
tfd.Normal(jnp.zeros(n_dimension), jnp.ones(n_dimension)),
reinterpreted_batch_ndims=1,
)
td = TransformedDistribution(base_distribution, chain)
Expand Down
Loading
Loading