Skip to content

TBiNet: A deep neural network for predicting transcription factor binding sites using attention mechanism

Notifications You must be signed in to change notification settings

dmis-lab/tbinet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TBiNet: A deep neural network for predicting transcription factor binding sites using attention mechanism

TBiNet is an attention-based neural network that predicts transcription factor-DNA binding in a given DNA sequence.

Paper information: Park, S., Koh, Y., Jeon, H. et al. "Enhancing the interpretability of transcription factor binding site prediction using attention mechanism", Scientific Reports (2020).

  • Overview of TBiNet model image

Requirements

  • Python (version 3.6.6, recommend installing Anaconda3)
  • Numpy (version 1.14.6)
  • H5py (version 2.8.0)
  • Scipy (version 1.1.0)
  • Sklearn (version 0.20.1)
  • Theano (version 1.0.3)
  • Keras (version 2.2.4, backend:theano)

Usage

Data

The ChIP-seq data used in this work can be downloaded from http://deepsea.princeton.edu/media/code/deepsea_train_bundle.v0.9.tar.gz.

Training TBiNet

train.ipynb

Testing TBiNet

test.ipynb

Contact information

For help or issues using TBiNet, please submit a GitHub issue. Please contact Sungjoon Park ([email protected]) for communication related to TBiNet.

About

TBiNet: A deep neural network for predicting transcription factor binding sites using attention mechanism

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published