This repository has been archived by the owner on May 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
bf8d953
commit 4389faa
Showing
1 changed file
with
254 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"You need this if you are running the notebook from repo" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"sys.path.append(\"../\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Please note, that it is necessary to adjust this notebook according to your Matomo configuration and data structure. Please check Readme file to check the data structure expectation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import requests\n", | ||
"import pandas as pd\n", | ||
"\n", | ||
"from variatio import VariatioAnalyzer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Configuration for Matomo API access\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"MATOMO_URL = 'https://your-matomo-domain.com' # Replace with your Matomo domain\n", | ||
"TOKEN_AUTH = 'your_matomo_api_token' # Replace with your API token\n", | ||
"SITE_ID = 'your_site_id' # Replace with your site ID in Matomo\n", | ||
"DATE_RANGE = '2023-01-01,2023-01-31' # Define the date range for data extraction\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def fetch_from_matomo(method, params):\n", | ||
" \"\"\"\n", | ||
" Generic function to fetch data from the Matomo API.\n", | ||
" - method: Matomo API method to be called\n", | ||
" - params: Additional parameters for the API call\n", | ||
" Returns: JSON response from the API\n", | ||
" \"\"\"\n", | ||
" api_params = {\n", | ||
" 'module': 'API',\n", | ||
" 'method': method,\n", | ||
" 'idSite': SITE_ID,\n", | ||
" 'period': 'range',\n", | ||
" 'date': DATE_RANGE,\n", | ||
" 'format': 'JSON',\n", | ||
" 'token_auth': TOKEN_AUTH,\n", | ||
" **params,\n", | ||
" }\n", | ||
" response = requests.get(MATOMO_URL, params=api_params)\n", | ||
" return response.json()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Fetching event data\n", | ||
"Here we're fetching event categories, adjusting parameters as needed for your events\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"event_data_response = fetch_from_matomo('Events.getCategory', {'secondaryDimension': 'eventName'})\n", | ||
"event_data_df = pd.json_normalize(event_data_response) # Normalize JSON response into a flat table\n", | ||
"event_data_df = event_data_df[['label', 'nb_visits', 'nb_events']] # Select relevant columns\n", | ||
"event_data_df.columns = ['event_name', 'visits', 'events_count'] # Rename columns for clarity\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Fetching A/B test allocation events example\n", | ||
"Assuming A/B test allocations are events with a specific naming pattern\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ab_test_response = fetch_from_matomo('Events.getCategory', {'secondaryDimension': 'eventAction', 'label': 'ABTest Allocation'})\n", | ||
"ab_test_df = pd.json_normalize(ab_test_response)\n", | ||
"ab_test_df = ab_test_df[['label', 'subtable']] # 'subtable' might contain more detailed data requiring further processing\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Fetching user properties example (custom dimensions)\n", | ||
"Replace 'ID_OF_YOUR_DIMENSION' with the actual ID of the custom dimension representing user properties\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"user_properties_response = fetch_from_matomo('CustomDimensions.getCustomDimension', {'idDimension': 'ID_OF_YOUR_DIMENSION'})\n", | ||
"user_properties_df = pd.json_normalize(user_properties_response) # Flatten the JSON response into a DataFrame\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"analyzer = VariatioAnalyzer(event_data: event_data_df, \n", | ||
" ab_test_allocations: ab_test_df, \n", | ||
" \"A\", \n", | ||
" user_properties: user_properties_df)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Metrics were calculated\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Calculate the count of 'purchase' events per user\n", | ||
"analyzer.calculate_event_count_per_user('purchase')\n", | ||
"\n", | ||
"# Calculate the sum of 'purchase_value' for 'purchase' events per user\n", | ||
"analyzer.calculate_event_attribute_sum_per_user('purchase', 'purchase_value')\n", | ||
"\n", | ||
"# Calculate the conversion rate to 'login' events\n", | ||
"analyzer.calculate_conversion('login')\n", | ||
"\n", | ||
"print(\"Metrics were calculated\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"analyzer.save_report(\"abtest_report.html\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |