forked from Mingtzge/MiVeCC_with_DRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
451 lines (410 loc) · 20.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# 定义了单个Agent的DDPG结构,及一些函数
import tensorflow as tf
import tensorflow.contrib as tc
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# import os
# from torch import optim
# from torch.autograd import Variable
class MADDPG():
def __init__(self, name, actor_lr, critic_lr, layer_norm=True, nb_actions=300,
num_units=256, state_len=4):
# nb_input = state_len * nb_actions
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.layer_norm = layer_norm
self.nb_actions = nb_actions
state_input = tf.placeholder(shape=[None, self.nb_actions, self.nb_actions, 3], dtype=tf.float32)
action_input = tf.placeholder(shape=[None, self.nb_actions], dtype=tf.float32)
reward = tf.placeholder(shape=[None, 1], dtype=tf.float32)
# 输入是一个具体的状态state,经过两层的全连接网络输出选择的动作action
def actor_network(name, state_input, num_action):
with tf.variable_scope(name) as scope:
x = state_input
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
# conv1 7*7*32
# layers.conv2d parameters
# inputs 输入,是一个张量
# filters 卷积核个数,也就是卷积层的厚度
# kernel_size 卷积核的尺寸
# strides: 扫描步长
# padding: 边边补0 valid不需要补0,same需要补0,为了保证输入输出的尺寸一致,补多少不需要知道
# activation: 激活函数
conv1 = tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.tanh
)
# pool1 36*36*64
# tf.layers.max_pooling2d
# inputs 输入,张量必须要有四个维度
# pool_size: 过滤器的尺寸
# pool1 = tf.layers.max_pooling2d(
# inputs=conv1,
# pool_size=[2, 2],
# strides=2
# )
# conv1 14*14*32
# layers.conv2d parameters
# inputs 输入,是一个张量
# filters 卷积核个数,也就是卷积层的厚度
# kernel_size 卷积核的尺寸
# strides: 扫描步长
# padding: 边边补0 valid不需要补0,same需要补0,为了保证输入输出的尺寸一致,补多少不需要知道
# activation: 激活函数
conv2 = tf.layers.conv2d(
inputs=conv1,
filters=16,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.tanh
)
# pool1 7*7*32
# tf.layers.max_pooling2d
# inputs 输入,张量必须要有四个维度
# pool_size: 过滤器的尺寸
# pool2 = tf.layers.max_pooling2d(
# inputs=conv2,
# pool_size=[2, 2],
# strides=2
# )
# flat(平坦化)
flat = tf.reshape(conv2, [-1, ((num_action - 3) // 4) * ((num_action - 3) // 4) * 16])
# 形状变成了[?,1568]
if self.layer_norm:
flat = tc.layers.layer_norm(flat, center=True, scale=True)
x = tf.layers.dense(flat, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.tanh(x)
x = tf.layers.dense(x, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3)) # 全连接层
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.tanh(x)
# x = tf.layers.dense(x, num_action,
# kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3)) # 全连接层
# if self.layer_norm:
# x = tc.layers.layer_norm(x, center=True, scale=True)
# x = tf.nn.relu(x)
x = tf.layers.dense(x, num_action,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
# x = tf.nn.softmax(x)
# x = tf.arg_max(x, 1)
# x = tf.cast(tf.reshape(x, [-1, 1]), dtype=tf.float32)
# bias = tf.constant(-30, dtype=tf.float32)
w_ = tf.constant(3, dtype=tf.float32)
# x = tf.multiply(tf.add(x, bias), w_)
x = tf.multiply(tf.nn.tanh(x), w_)
return x
# 输入时 state,所有Agent当前的action信息
def critic_network(name, state_input, action_input, reuse=False):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
x = state_input
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
# conv1 72*72*64
# layers.conv2d parameters
# inputs 输入,是一个张量
# filters 卷积核个数,也就是卷积层的厚度
# kernel_size 卷积核的尺寸
# strides: 扫描步长
# padding: 边边补0 valid不需要补0,same需要补0,为了保证输入输出的尺寸一致,补多少不需要知道
# activation: 激活函数
conv1 = tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.relu
)
# pool1 36*36*64
# tf.layers.max_pooling2d
# inputs 输入,张量必须要有四个维度
# pool_size: 过滤器的尺寸
# pool1 = tf.layers.max_pooling2d(
# inputs=conv1,
# pool_size=[2, 2],
# strides=2
# )
# conv1 14*14*32
# layers.conv2d parameters
# inputs 输入,是一个张量
# filters 卷积核个数,也就是卷积层的厚度
# kernel_size 卷积核的尺寸
# strides: 扫描步长
# padding: 边边补0 valid不需要补0,same需要补0,为了保证输入输出的尺寸一致,补多少不需要知道
# activation: 激活函数
conv2 = tf.layers.conv2d(
inputs=conv1,
filters=16,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.relu
)
# pool1 7*7*32
# tf.layers.max_pooling2d
# inputs 输入,张量必须要有四个维度
# pool_size: 过滤器的尺寸
# pool2 = tf.layers.max_pooling2d(
# inputs=conv2,
# pool_size=[2, 2],
# strides=2
# )
# flat(平坦化)
flat = tf.reshape(conv2,
[-1, ((action_input.shape[1] - 3) // 4) * ((action_input.shape[1] - 3) // 4) * 16])
# 形状变成了[?,1568]
x = tf.concat([flat, action_input], axis=-1)
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.layers.dense(x, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
# x = tf.concat([x, action_input], axis=-1)
x = tf.layers.dense(x, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
x = tf.layers.dense(x, num_units / 2,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
x = tf.layers.dense(x, num_units / 4,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
return x
self.state_input = state_input
self.action_input = action_input
self.reward = reward
self.action_output = actor_network(name + "_actor", state_input=self.state_input, num_action=self.nb_actions)
self.critic_output = critic_network(name + '_critic',
action_input=self.action_input, state_input=self.state_input)
self.actor_optimizer = tf.train.AdamOptimizer(self.actor_lr)
self.critic_optimizer = tf.train.AdamOptimizer(self.critic_lr)
# 最大化Q值
self.actor_loss = -tf.reduce_mean(
critic_network(name + '_critic',
action_input=self.action_output,
reuse=True, state_input=self.state_input)) # reduce_mean 为求均值,即为期望
online_var = [i for i in tf.trainable_variables() if name + "_actor" in i.name]
self.actor_train = self.actor_optimizer.minimize(self.actor_loss, var_list=online_var)
# self.actor_train = self.actor_optimizer.minimize(self.actor_loss)
self.actor_loss_op = tf.summary.scalar("actor_loss", self.actor_loss)
self.target_Q = tf.placeholder(shape=[None, 1], dtype=tf.float32)
self.critic_loss = tf.reduce_mean(tf.square(self.target_Q - self.critic_output)) # 目标Q 与 真实Q 之间差的平方的均值
self.critic_loss_op = tf.summary.scalar("critic_loss", self.critic_loss)
self.critic_train = self.critic_optimizer.minimize(self.critic_loss)
self.count = 0
def train_actor(self, state, action, sess, summary_writer, lr):
self.count += 1
self.actor_lr = lr
summary_writer.add_summary(
sess.run(self.actor_loss_op, {self.state_input: state, self.action_input: action}), self.count)
sess.run(self.actor_train, {self.state_input: state, self.action_input: action})
def train_critic(self, state, action, target, sess, summary_writer, lr):
self.critic_lr = lr
summary_writer.add_summary(
sess.run(self.critic_loss_op, {self.state_input: state, self.action_input: action,
self.target_Q: target}), self.count)
sess.run(self.critic_train,
{self.state_input: state, self.action_input: action, self.target_Q: target})
def action(self, state, sess):
return sess.run(self.action_output, {self.state_input: state})
def Q(self, state, action, sess):
return sess.run(self.critic_output,
{self.state_input: state, self.action_input: action})
class M_MADDPG():
def __init__(self, name, actor_lr, critic_lr, layer_norm=True, nb_actions=300,
num_units=256, state_len=4):
# nb_input = state_len * nb_actions
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.layer_norm = layer_norm
self.nb_actions = nb_actions
state_input = tf.placeholder(shape=[None, self.nb_actions, self.nb_actions, 3], dtype=tf.float32)
action_input = tf.placeholder(shape=[None, self.nb_actions], dtype=tf.float32)
reward = tf.placeholder(shape=[None, 1], dtype=tf.float32)
# 输入是一个具体的状态state,经过两层的全连接网络输出选择的动作action
def actor_network(name, state_input, num_action):
with tf.variable_scope(name) as scope:
x = state_input
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
# conv1 7*7*32
# layers.conv2d parameters
# inputs 输入,是一个张量
# filters 卷积核个数,也就是卷积层的厚度
# kernel_size 卷积核的尺寸
# strides: 扫描步长
# padding: 边边补0 valid不需要补0,same需要补0,为了保证输入输出的尺寸一致,补多少不需要知道
# activation: 激活函数
# input 60*60*3
# output 29*29*32
conv1 = tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.tanh
)
# input 29*29*32
# output 14*14*32
conv2 = tf.layers.conv2d(
inputs=conv1,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.tanh
)
# input 14*14*32
# output 6*6*16
conv3 = tf.layers.conv2d(
inputs=conv2,
filters=16,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.tanh
)
# flat(平坦化)
flat = tf.reshape(conv3, [-1, 6 * 6 * 16])
# 形状变成了[?,1568]
if self.layer_norm:
flat = tc.layers.layer_norm(flat, center=True, scale=True)
x = tf.layers.dense(flat, num_units*2,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.tanh(x)
x = tf.nn.tanh(x)
x = tf.layers.dense(x, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3)) # 全连接层
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.tanh(x)
x = tf.layers.dense(x, num_action,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
w_ = tf.constant(3, dtype=tf.float32)
# x = tf.multiply(tf.add(x, bias), w_)
x = tf.multiply(tf.nn.tanh(x), w_)
return x
# 输入时 state,所有Agent当前的action信息
def critic_network(name, state_input, action_input, reuse=False):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
x = state_input
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
conv1 = tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.relu
)
# input 30*30*32
# output 15*15*32
conv2 = tf.layers.conv2d(
inputs=conv1,
filters=32,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.relu
)
# input 15*15*32
# output 7*7*16
conv3 = tf.layers.conv2d(
inputs=conv2,
filters=16,
kernel_size=[3, 3],
strides=2,
padding="valid",
activation=tf.nn.relu
)
# flat(平坦化)
flat = tf.reshape(conv3, [-1, 6 * 6 * 16])
x = tf.concat([flat, action_input], axis=-1)
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.layers.dense(x, num_units*2,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
# x = tf.concat([x, action_input], axis=-1)
x = tf.layers.dense(x, num_units,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
x = tf.layers.dense(x, num_units / 4,
kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
if self.layer_norm:
x = tc.layers.layer_norm(x, center=True, scale=True)
x = tf.nn.relu(x)
x = tf.layers.dense(x, 1, kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3))
return x
self.state_input = state_input
self.action_input = action_input
self.reward = reward
self.action_output = actor_network(name + "_actor", state_input=self.state_input, num_action=self.nb_actions)
self.critic_output = critic_network(name + '_critic',
action_input=self.action_input, state_input=self.state_input)
self.actor_optimizer = tf.train.AdamOptimizer(self.actor_lr)
self.critic_optimizer = tf.train.AdamOptimizer(self.critic_lr)
# 最大化Q值
self.actor_loss = -tf.reduce_mean(
critic_network(name + '_critic',
action_input=self.action_output,
reuse=True, state_input=self.state_input)) # reduce_mean 为求均值,即为期望
online_var = [i for i in tf.trainable_variables() if name + "_actor" in i.name]
self.actor_train = self.actor_optimizer.minimize(self.actor_loss, var_list=online_var)
# self.actor_train = self.actor_optimizer.minimize(self.actor_loss)
self.actor_loss_op = tf.summary.scalar("actor_loss", self.actor_loss)
self.target_Q = tf.placeholder(shape=[None, 1], dtype=tf.float32)
self.critic_loss = tf.reduce_mean(tf.square(self.target_Q - self.critic_output)) # 目标Q 与 真实Q 之间差的平方的均值
self.critic_loss_op = tf.summary.scalar("critic_loss", self.critic_loss)
self.critic_train = self.critic_optimizer.minimize(self.critic_loss)
self.count = 0
def train_actor(self, state, action, sess, summary_writer, lr):
self.count += 1
self.actor_lr = lr
summary_writer.add_summary(
sess.run(self.actor_loss_op, {self.state_input: state, self.action_input: action}), self.count)
sess.run(self.actor_train, {self.state_input: state, self.action_input: action})
def train_critic(self, state, action, target, sess, summary_writer, lr):
self.critic_lr = lr
summary_writer.add_summary(
sess.run(self.critic_loss_op, {self.state_input: state, self.action_input: action,
self.target_Q: target}), self.count)
sess.run(self.critic_train,
{self.state_input: state, self.action_input: action, self.target_Q: target})
def action(self, state, sess):
return sess.run(self.action_output, {self.state_input: state})
def Q(self, state, action, sess):
return sess.run(self.critic_output,
{self.state_input: state, self.action_input: action})