Releases: edahelsinki/slisemap
Releases · edahelsinki/slisemap
Version 1.6.2
Version 1.6.1
What's Changed
- Faster kmeans when plotting: #15
Version 1.6.0
What's Changed
- Implement Slipmap, a variant based on prototypes that scales better with respect to both time and memory.
- Separate (optional) regularisation functions.
- Use Bayesian optimisation for hyperparameter tuning.
- Remove pre-1.3 deprecations.
- Add optimisation stats to metadata.
- Move paper experiments to frozen branches
Full Changelog: v1.5.2...v1.6.0
Version 1.5.2
Changes:
- Improved
sm.plot_dist(scatter=True)
- Improved cluster handling in
sm.plot()
- Added example notebook for interactive plots
Version 1.5.1
Changes:
- Fix a
isinstance(bool, int) == True
oversight
Version 1.5.0
Changes:
plot
: improve labels for matrix plotplot
: more flexible clusters (not just integers [0..k])plot
: bars accepts a list of variablesget_model_clusters
: sort the clusters labels based on the embeddingsave
andload
: add (optional but default) LZMA compressionmetadata.get_variables
: fix fallback
Version 1.4.0
Additions:
- Add procedures for hyperparameter optimisation (see
slisemap.tuning
). - Added wrappers that combine
local_model
,local_loss
, andcoefficients
into one name (see, e.g.,slisemap.local_models.LogisticRegression
).
Changes:
- Change defaults for
slisemap.metrics.accuracy
(tooptimise=False
,local_loss=True
). - Add
numpy
parameter toSlisemap.fit_new
. - Improve the
Slisemap.predict
function to take more parameters. - Move
entropy
toslisemap.metrics
. - Fix some deficiencies in
slisemap.utils.Metadata
. - Improve the x-axis labels for the matrix plot.
Version 1.3.1
New features:
- Metadata
- Add metadata about e.g. variable names and normalisation
- The metadata is reused for all plots
- More general input
- Anything that can be turned into a
torch.Tensor
ornumpy.ndarray
is accepted - This includes dataframe-like objects (also imports variable names)
- Anything that can be turned into a
Improvements:
- Better colourscales for local losses
- Centering before PCA
Slisemap.load
understandsmap_location
fromtorch.load
- More verbosity levels for optimisation
Changes:
- Remove types from docstrings
- Rename "Fidelity" to "Local loss" in plots
Deprecations:
- With the addition of metadata, some parameters to the plotting functions have been deprecated
Version 1.2.1
What's Changed
- Refactor demo examples + add binder demo to README by @MomoLangenstein in #3
- Point the user towards multiple_linear_regression if they use nd-y by @MomoLangenstein in #5
- Improve docs by @Aggrathon in #6
- Cleanup of properties (some deprecation warnings)
- Update references by @Aggrathon in #7
Full Changelog: v1.1.0...v1.2.1
Version 1.1.0
Main changes in this release:
- Improved documentation.
- Less randomness (only perturb the embedding if a loss of rank is detected).
- New argument
only_B
in theSlisemap.optimise
(the same asSlisemap.lbfgs(only_B)
). - Tweaks to the plots and updated experiments.
- A notebook discussing how to use PyTorch for optimisation.