Skip to content

Releases: edahelsinki/slisemap

Version 1.6.2

30 Apr 09:08
1a1f6c7
Compare
Choose a tag to compare

Added a reference to the published SLIPMAP paper.

Version 1.6.1

20 Feb 13:03
82b4012
Compare
Choose a tag to compare

What's Changed

  • Faster kmeans when plotting: #15

Version 1.6.0

16 Feb 11:04
e26e2aa
Compare
Choose a tag to compare

What's Changed

  • Implement Slipmap, a variant based on prototypes that scales better with respect to both time and memory.
  • Separate (optional) regularisation functions.
  • Use Bayesian optimisation for hyperparameter tuning.
  • Remove pre-1.3 deprecations.
  • Add optimisation stats to metadata.
  • Move paper experiments to frozen branches

Full Changelog: v1.5.2...v1.6.0

Version 1.5.2

21 Apr 11:26
a352a5f
Compare
Choose a tag to compare

Changes:

  • Improved sm.plot_dist(scatter=True)
  • Improved cluster handling in sm.plot()
  • Added example notebook for interactive plots

Version 1.5.1

31 Mar 13:32
c181e61
Compare
Choose a tag to compare

Changes:

  • Fix a isinstance(bool, int) == True oversight

Version 1.5.0

29 Mar 12:25
25e643b
Compare
Choose a tag to compare

Changes:

  • plot: improve labels for matrix plot
  • plot: more flexible clusters (not just integers [0..k])
  • plot: bars accepts a list of variables
  • get_model_clusters: sort the clusters labels based on the embedding
  • save and load: add (optional but default) LZMA compression
  • metadata.get_variables: fix fallback

Version 1.4.0

20 Feb 15:25
8f59563
Compare
Choose a tag to compare

Additions:

  • Add procedures for hyperparameter optimisation (see slisemap.tuning).
  • Added wrappers that combine local_model, local_loss, and coefficients into one name (see, e.g., slisemap.local_models.LogisticRegression).

Changes:

  • Change defaults for slisemap.metrics.accuracy (to optimise=False, local_loss=True).
  • Add numpy parameter to Slisemap.fit_new.
  • Improve the Slisemap.predict function to take more parameters.
  • Move entropy to slisemap.metrics.
  • Fix some deficiencies in slisemap.utils.Metadata.
  • Improve the x-axis labels for the matrix plot.

Version 1.3.1

25 Jan 12:46
Compare
Choose a tag to compare

New features:

  • Metadata
    • Add metadata about e.g. variable names and normalisation
    • The metadata is reused for all plots
  • More general input
    • Anything that can be turned into a torch.Tensor or numpy.ndarray is accepted
    • This includes dataframe-like objects (also imports variable names)

Improvements:

  • Better colourscales for local losses
  • Centering before PCA
  • Slisemap.load understands map_location from torch.load
  • More verbosity levels for optimisation

Changes:

  • Remove types from docstrings
  • Rename "Fidelity" to "Local loss" in plots

Deprecations:

  • With the addition of metadata, some parameters to the plotting functions have been deprecated

Version 1.2.1

25 Nov 12:48
Compare
Choose a tag to compare

What's Changed

  • Refactor demo examples + add binder demo to README by @MomoLangenstein in #3
  • Point the user towards multiple_linear_regression if they use nd-y by @MomoLangenstein in #5
  • Improve docs by @Aggrathon in #6
  • Cleanup of properties (some deprecation warnings)
  • Update references by @Aggrathon in #7

Full Changelog: v1.1.0...v1.2.1

Version 1.1.0

08 Jul 13:10
Compare
Choose a tag to compare

Main changes in this release:

  • Improved documentation.
  • Less randomness (only perturb the embedding if a loss of rank is detected).
  • New argument only_B in the Slisemap.optimise (the same as Slisemap.lbfgs(only_B)).
  • Tweaks to the plots and updated experiments.
  • A notebook discussing how to use PyTorch for optimisation.