Java idiomatic client for Cloud BigQuery.
If you are using Maven with BOM, add this to your pom.xml file
<!-- Using libraries-bom to manage versions.
See https://github.com/GoogleCloudPlatform/cloud-opensource-java/wiki/The-Google-Cloud-Platform-Libraries-BOM -->
<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>libraries-bom</artifactId>
<version>5.5.0</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
</dependency>
If you are using Maven without BOM, add this to your dependencies:
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-bigquery</artifactId>
<version>1.116.0</version>
</dependency>
If you are using Gradle, add this to your dependencies
compile 'com.google.cloud:google-cloud-bigquery:1.116.1'
If you are using SBT, add this to your dependencies
libraryDependencies += "com.google.cloud" % "google-cloud-bigquery" % "1.116.1"
See the Authentication section in the base directory's README.
You will need a Google Cloud Platform Console project with the Cloud BigQuery API enabled.
You will need to enable billing to use Google Cloud BigQuery.
Follow these instructions to get your project set up. You will also need to set up the local development environment by
installing the Google Cloud SDK and running the following commands in command line:
gcloud auth login
and gcloud config set project [YOUR PROJECT ID]
.
You'll need to obtain the google-cloud-bigquery
library. See the Quickstart section
to add google-cloud-bigquery
as a dependency in your code.
Cloud BigQuery is a fully managed, NoOps, low cost data analytics service. Data can be streamed into BigQuery at millions of rows per second to enable real-time analysis. With BigQuery you can easily deploy Petabyte-scale Databases.
See the Cloud BigQuery client library docs to learn how to use this Cloud BigQuery Client Library.
With BigQuery you can create datasets. A dataset is a grouping mechanism that holds zero or more tables. Add the following import at the top of your file:
import com.google.cloud.bigquery.DatasetInfo;
Then, to create the dataset, use the following code:
// Create a dataset
String datasetId = "my_dataset_id";
bigquery.create(DatasetInfo.newBuilder(datasetId).build());
With BigQuery you can create different types of tables: normal tables with an associated schema, external tables backed by data stored on Google Cloud Storage and view tables that are created from a BigQuery SQL query. In this code snippet we show how to create a normal table with only one string field. Add the following imports at the top of your file:
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.Table;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;
Then add the following code to create the table:
TableId tableId = TableId.of(datasetId, "my_table_id");
// Table field definition
Field stringField = Field.of("StringField", LegacySQLTypeName.STRING);
// Table schema definition
Schema schema = Schema.of(stringField);
// Create a table
StandardTableDefinition tableDefinition = StandardTableDefinition.of(schema);
Table createdTable = bigquery.create(TableInfo.of(tableId, tableDefinition));
BigQuery provides several ways to load data into a table: streaming rows or loading data from a Google Cloud Storage file. In this code snippet we show how to stream rows into a table. Add the following imports at the top of your file:
import com.google.cloud.bigquery.InsertAllRequest;
import com.google.cloud.bigquery.InsertAllResponse;
import java.util.HashMap;
import java.util.Map;
Then add the following code to insert data:
Map<String, Object> firstRow = new HashMap<>();
Map<String, Object> secondRow = new HashMap<>();
firstRow.put("StringField", "value1");
secondRow.put("StringField", "value2");
// Create an insert request
InsertAllRequest insertRequest = InsertAllRequest.newBuilder(tableId)
.addRow(firstRow)
.addRow(secondRow)
.build();
// Insert rows
InsertAllResponse insertResponse = bigquery.insertAll(insertRequest);
// Check if errors occurred
if (insertResponse.hasErrors()) {
System.out.println("Errors occurred while inserting rows");
}
BigQuery enables querying data by running queries and waiting for the result. Queries can be run directly or through a Query Job. In this code snippet we show how to run a query directly and wait for the result. Add the following imports at the top of your file:
import com.google.cloud.bigquery.FieldValueList;
import com.google.cloud.bigquery.QueryJobConfiguration;
Then add the following code to run the query and wait for the result:
// Create a query request
QueryJobConfiguration queryConfig =
QueryJobConfiguration.newBuilder("SELECT my_column FROM my_dataset_id.my_table_id").build();
// Read rows
System.out.println("Table rows:");
for (FieldValueList row : bigquery.query(queryConfig).iterateAll()) {
System.out.println(row);
}
In InsertDataAndQueryTable.java we put together all the code shown above into one program. The program assumes that you are running on Compute Engine or from your own desktop. To run the example on App Engine, simply move the code from the main method to your application's servlet class and change the print statements to display on your webpage.
Samples are in the samples/
directory. The samples' README.md
has instructions for running the samples.
Sample | Source Code | Try it |
---|---|---|
Add Column Load Append | source code | |
Add Empty Column | source code | |
Auth Drive Scope | source code | |
Auth Snippets | source code | |
Copy Multiple Tables | source code | |
Create Clustered Table | source code | |
Create Dataset | source code | |
Create Partitioned Table | source code | |
Create Table | source code | |
Delete Dataset | source code | |
Delete Table | source code | |
Extract Table To Json | source code | |
Get Dataset Info | source code | |
Get Model | source code | |
Get Table | source code | |
List Datasets | source code | |
List Models | source code | |
List Tables | source code | |
Load Local File | source code | |
Load Parquet | source code | |
Load Parquet Replace Table | source code | |
Load Partitioned Table | source code | |
Load Table Clustered | source code | |
Nested Repeated Schema | source code | |
Query Clustered Table | source code | |
Query With Named Parameters | source code | |
Query With Positional Parameters | source code | |
Query With Structs Parameters | source code | |
Quickstart Sample | source code | |
Relax Column Mode | source code | |
Relax Table Query | source code | |
Run Legacy Query | source code | |
Simple App | source code | |
Table Insert Rows | source code | |
Update Dataset Access | source code | |
Update Dataset Description | source code | |
Update Dataset Expiration | source code | |
Update Table Description | source code | |
Update Table Expiration | source code |
To get help, follow the instructions in the shared Troubleshooting document.
Java 7 or above is required for using this client.
This library follows Semantic Versioning.
Contributions to this library are always welcome and highly encouraged.
See CONTRIBUTING for more information how to get started.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Code of Conduct for more information.
Apache 2.0 - See LICENSE for more information.
Java Version | Status |
---|---|
Java 7 | |
Java 8 | |
Java 8 OSX | |
Java 8 Windows | |
Java 11 |