Skip to content

Commit

Permalink
Improve function documentation for point forecasts
Browse files Browse the repository at this point in the history
  • Loading branch information
nikosbosse committed Sep 17, 2024
1 parent 1f4f36e commit 0ca3b9e
Show file tree
Hide file tree
Showing 3 changed files with 71 additions and 2 deletions.
36 changes: 35 additions & 1 deletion R/default-scoring-rules.R
Original file line number Diff line number Diff line change
Expand Up @@ -124,13 +124,47 @@ get_metrics.forecast_nominal <- function(x, select = NULL, exclude = NULL, ...)
#' - "ae_point" = [ae()][Metrics::ae()]
#' - "se_point" = [se()][Metrics::se()]
#' - "ape" = [ape()][Metrics::ape()]
#'
#' A note of caution: Every scoring rule for a point forecast
#' is implicitly minimised by a specific aspect of the predictive distribution
#' (see Gneiting, 2011).
#'
#' The mean squared error, for example, is only a meaningful scoring rule if
#' the forecaster actually reported the mean of their predictive distribution
#' as a point forecast. If the forecaster reported the median, then the mean
#' absolute error would be the appropriate scoring rule. If the scoring rule
#' and the predictive task do not align, misleading results ensue.
#'
#' Failure to respect this correspondence can lead to grossly misleading
#' results! Consider the example in the section below.
#' @inheritSection illustration-input-metric-binary-point Input format
#' @inheritParams get_metrics.forecast_binary
#' @export
#' @family `get_metrics` functions
#' @keywords handle-metrics
#' @examples
#' get_metrics(example_point, select = "ape")
#'
#' library(magrittr)
#' set.seed(123)
#' n <- 500
#' observed <- rnorm(n, 5, 4)^2
#'
#' predicted_mu <- mean(observed)
#' predicted_not_mu <- predicted_mu - rnorm(n, 10, 2)
#'
#' df <- data.frame(
#' model = rep(c("perfect", "bad"), each = n),
#' predicted = c(rep(predicted_mu, n), predicted_not_mu),
#' observed = rep(observed, 2),
#' id = rep(1:n, 2)
#' ) %>%
#' as_forecast_point()
#' score(df) %>%
#' summarise_scores()
#' @references
#' Making and Evaluating Point Forecasts, Gneiting, Tilmann, 2011,
#' Journal of the American Statistical Association.
get_metrics.forecast_point <- function(x, select = NULL, exclude = NULL, ...) {
all <- list(
ae_point = Metrics::ae,
Expand Down Expand Up @@ -183,7 +217,7 @@ get_metrics.forecast_sample <- function(x, select = NULL, exclude = NULL, ...) {
#'
#' @description
#' For quantile-based forecasts, the default scoring rules are:
#' - "wis" = [wis]
#' - "wis" = [wis()]
#' - "overprediction" = [overprediction_quantile()]
#' - "underprediction" = [underprediction_quantile()]
#' - "dispersion" = [dispersion_quantile()]
Expand Down
35 changes: 35 additions & 0 deletions man/get_metrics.forecast_point.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/get_metrics.forecast_quantile.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 0ca3b9e

Please sign in to comment.