Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Increase test coverage #906

Merged
merged 2 commits into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .Rbuildignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,4 @@
^CODE_OF_CONDUCT\.md$
^inst/manuscript/output$
^CRAN-SUBMISSION$
^.vscode
2 changes: 0 additions & 2 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -118,10 +118,8 @@ importFrom(checkmate,check_numeric)
importFrom(checkmate,check_set_equal)
importFrom(checkmate,check_vector)
importFrom(checkmate,test_atomic_vector)
importFrom(checkmate,test_factor)
importFrom(checkmate,test_list)
importFrom(checkmate,test_names)
importFrom(checkmate,test_numeric)
importFrom(checkmate,test_set_equal)
importFrom(checkmate,test_subset)
importFrom(cli,cli_abort)
Expand Down
64 changes: 0 additions & 64 deletions R/get_-functions.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,70 +19,6 @@ get_forecast_type <- function(forecast) {
}


#' Test whether data could be a binary forecast.
#' @description Checks type of the necessary columns.
#' @inheritParams document_check_functions
#' @importFrom checkmate test_factor test_numeric
#' @return Returns TRUE if basic requirements are satisfied and FALSE otherwise
#' @keywords internal_input_check
test_forecast_type_is_binary <- function(data) {
observed_correct <- test_factor(x = data$observed)
predicted_correct <- test_numeric(x = data$predicted)
return(observed_correct && predicted_correct)
}

#' Test whether data could be a sample-based forecast.
#' @description Checks type of the necessary columns.
#' @inheritParams document_check_functions
#' @return Returns TRUE if basic requirements are satisfied and FALSE otherwise
#' @keywords internal_input_check
test_forecast_type_is_sample <- function(data) {
observed_correct <- test_numeric(x = data$observed)
predicted_correct <- test_numeric(x = data$predicted)
columns_correct <- test_columns_present(data, "sample_id")
return(observed_correct && predicted_correct && columns_correct)
}

#' Test whether data could be a point forecast.
#' @description Checks type of the necessary columns.
#' @inheritParams document_check_functions
#' @return Returns TRUE if basic requirements are satisfied and FALSE otherwise
#' @keywords internal_input_check
test_forecast_type_is_point <- function(data) {
observed_correct <- test_numeric(x = data$observed)
predicted_correct <- test_numeric(x = data$predicted)
columns_correct <- test_columns_not_present(
data, c("sample_id", "quantile_level")
)
return(observed_correct && predicted_correct && columns_correct)
}

#' Test whether data could be a quantile forecast.
#' @description Checks type of the necessary columns.
#' @inheritParams document_check_functions
#' @return Returns TRUE if basic requirements are satisfied and FALSE otherwise
#' @keywords internal_input_check
test_forecast_type_is_quantile <- function(data) {
observed_correct <- test_numeric(x = data$observed)
predicted_correct <- test_numeric(x = data$predicted)
columns_correct <- test_columns_present(data, "quantile_level")
return(observed_correct && predicted_correct && columns_correct)
}

#' Test whether data could be a nominal forecast.
#' @description Checks type of the necessary columns.
#' @inheritParams document_check_functions
#' @return Returns TRUE if basic requirements are satisfied and FALSE otherwise
#' @keywords internal_input_check
test_forecast_type_is_nominal <- function(data) {
observed_correct <- test_factor(x = data$observed)
predicted_correct <- test_numeric(x = data$predicted)
columns_correct <- test_columns_present(data, "predicted_label")
predicted_label_correct <- test_factor(x = data$predicted_label)
return(observed_correct && predicted_correct &&
columns_correct && predicted_label_correct)
}

#' Assert that forecast type is as expected
#' @param data A forecast object (see [as_forecast()]).
#' @param actual The actual forecast type of the data
Expand Down
18 changes: 0 additions & 18 deletions man/test_forecast_type_is_binary.Rd

This file was deleted.

18 changes: 0 additions & 18 deletions man/test_forecast_type_is_nominal.Rd

This file was deleted.

18 changes: 0 additions & 18 deletions man/test_forecast_type_is_point.Rd

This file was deleted.

18 changes: 0 additions & 18 deletions man/test_forecast_type_is_quantile.Rd

This file was deleted.

18 changes: 0 additions & 18 deletions man/test_forecast_type_is_sample.Rd

This file was deleted.

Loading