Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Doc Fix #2008

Merged
merged 1 commit into from
Dec 6, 2024
Merged

Doc Fix #2008

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions Docs/sphinx_doc/theory/DryEquations.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ In compressible mode, in the absence of moisture, ERF solves the following parti
expressing conservation of mass :math:`(\rho)`, momentum :math:`(\rho \mathbf{u})`, potential temperature :math:`(\rho \theta_{d})`, and scalars :math:`(\rho \mathbf{\phi})`:

.. math::
\frac{\partial \rho_d}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u}),
\frac{\partial \rho_d}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u}),

\frac{\partial (\rho_d \mathbf{u})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^\prime - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},
\frac{\partial (\rho_d \mathbf{u})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^\prime - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},

\frac{\partial (\rho_d \theta_d)}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta},
\frac{\partial (\rho_d \theta_d)}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta},

\frac{\partial (\rho_d \boldsymbol{\phi})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \boldsymbol{\phi}) + \nabla \cdot ( \rho_d \alpha_{\phi}\ \nabla \boldsymbol{\phi}) + \mathbf{F}_{\phi}.

Expand Down
10 changes: 5 additions & 5 deletions Docs/sphinx_doc/theory/Microphysics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,15 +30,15 @@ where :math:`C_c` is the rate of condensation of water vapor to cloud water, :ma
rain to water vapor and :math:`F_r = \rho_{d} w_{t} q_p` is the sedimentation flux. The source terms that enter into the governing equations are then given by:

.. math::
\mathbf{F_{n}} \equiv [F_{q_v}, F_{q_c}] = \left[ -C_c, \;\; C_c \right],
\mathbf{F_{n}} &\equiv [F_{q_v}, F_{q_c}] = \left[ -C_c, \;\; C_c \right],

\mathbf{G_{p}} = \left[ E_r, \;\; -A_c - K_c \right],
\mathbf{G_{p}} &= \left[ E_r, \;\; -A_c - K_c \right],

H_{n} = \rho_d \frac{L_v}{c_p} \frac{\theta_d}{T} C_c,
H_{n} &= \rho_d \frac{L_v}{c_p} \frac{\theta_d}{T} C_c,

F_{p} = A_c + K_c - E_c,
F_{p} &= A_c + K_c - E_c,

H_{p} = -\rho_d \frac{L_v}{c_p} \frac{\theta_d}{T} E_r.
H_{p} &= -\rho_d \frac{L_v}{c_p} \frac{\theta_d}{T} E_r.

The parametrizations provided in `klemp1978simulation`_ are given below for each term.
Note that in all the equations, :math:`p` is specified in millibars and :math:`\overline{\rho}` is specified in g cm :math:`^{-3}`. The parametrization
Expand Down
22 changes: 11 additions & 11 deletions Docs/sphinx_doc/theory/WetEquations.rst
Original file line number Diff line number Diff line change
Expand Up @@ -35,15 +35,15 @@ Governing Equations
The governing equations without precipitating moisture variables are

.. math::
\frac{\partial \rho_d}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u}),
\frac{\partial \rho_d}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u}),

\frac{\partial (\rho_d \mathbf{u})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^{\prime} - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},
\frac{\partial (\rho_d \mathbf{u})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^{\prime} - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},

\frac{\partial (\rho_d \theta_d)}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta} + H_{n},
\frac{\partial (\rho_d \theta_d)}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta} + H_{n},

\frac{\partial (\rho_d \boldsymbol{\phi})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \boldsymbol{\phi}) + \nabla \cdot ( \rho_d \alpha_{\phi}\ \nabla \boldsymbol{\phi}) + \mathbf{F}_{\phi},
\frac{\partial (\rho_d \boldsymbol{\phi})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \boldsymbol{\phi}) + \nabla \cdot ( \rho_d \alpha_{\phi}\ \nabla \boldsymbol{\phi}) + \mathbf{F}_{\phi},

\frac{\partial (\rho_d \mathbf{q_{n}})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{n}}) + \nabla \cdot (\rho_d \alpha_{q} \nabla \mathbf{q_{n}}) + \mathbf{F_{n}},
\frac{\partial (\rho_d \mathbf{q_{n}})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{n}}) + \nabla \cdot (\rho_d \alpha_{q} \nabla \mathbf{q_{n}}) + \mathbf{F_{n}},

the non-precipitating water mixing ratio vector :math:`\mathbf{q_{n}} = \left[ q_v \;\; q_c \;\; q_i \right]` includes water vapor, :math:`q_v`, cloud water, :math:`q_c`, and cloud ice, :math:`q_i`, although some models may not include cloud ice. The source terms for moisture variables, :math:`\mathbf{F_{n}}`, and their corresponding impact on potential temperature, :math:`H_{n}` are specific to the employed model. For the Kessler microphysics scheme, these terms are detailed in :ref:`sec:Kessler Microphysics model <Microphysics>`.

Expand Down Expand Up @@ -119,16 +119,16 @@ Governing Equations
The governing equations with precipitating moisture components are

.. math::
\frac{\partial \rho_d}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u}),
\frac{\partial \rho_d}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u}),

\frac{\partial (\rho_d \mathbf{u})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^{\prime} - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},
\frac{\partial (\rho_d \mathbf{u})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{u}) - \frac{1}{1 + q_v + q_c} ( \nabla p^{\prime} - \delta_{i,3}\mathbf{B} ) - \nabla \cdot \boldsymbol{\tau} + \mathbf{F}_{u},

\frac{\partial (\rho_d \theta_d)}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta} + H_{n} + H_{p},
\frac{\partial (\rho_d \theta_d)}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \theta_d) + \nabla \cdot ( \rho_d \alpha_{\theta}\ \nabla \theta_d) + F_{\theta} + H_{n} + H_{p},

\frac{\partial (\rho_d \boldsymbol{\phi})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \boldsymbol{\phi}) + \nabla \cdot ( \rho_d \alpha_{\phi}\ \nabla \boldsymbol{\phi}) + \mathbf{F}_{\phi},
\frac{\partial (\rho_d \boldsymbol{\phi})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \boldsymbol{\phi}) + \nabla \cdot ( \rho_d \alpha_{\phi}\ \nabla \boldsymbol{\phi}) + \mathbf{F}_{\phi},

\frac{\partial (\rho_d \mathbf{q_{n}})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{n}}) + \nabla \cdot (\rho_d \alpha_{q} \nabla \mathbf{q_{n}}) + \mathbf{F_{n}} + \mathbf{G_{p}},
\frac{\partial (\rho_d \mathbf{q_{n}})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{n}}) + \nabla \cdot (\rho_d \alpha_{q} \nabla \mathbf{q_{n}}) + \mathbf{F_{n}} + \mathbf{G_{p}},

\frac{\partial (\rho_d \mathbf{q_{p}})}{\partial t} = - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{p}}) + \partial_{z} \left( \rho_d \mathbf{w_{t}} \mathbf{q_{p}} \right) + \mathbf{F_{p}}.
\frac{\partial (\rho_d \mathbf{q_{p}})}{\partial t} &= - \nabla \cdot (\rho_d \mathbf{u} \mathbf{q_{p}}) + \partial_{z} \left( \rho_d \mathbf{w_{t}} \mathbf{q_{p}} \right) + \mathbf{F_{p}}.

the non-precipitating water mixing ratio vector :math:`\mathbf{q_{n}} = \left[ q_v \;\; q_c \;\; q_i \right]` includes water vapor, :math:`q_v`, cloud water, :math:`q_c`, and cloud ice, :math:`q_i`, although some models may not include cloud ice; similarly, the precipitating water mixing ratio vector :math:`\mathbf{q_{p}} = \left[ q_r \;\; q_s \;\; q_g \right]` involves rain, :math:`q_r`, snow, :math:`q_s`, and graupel, :math:`q_g`, though some models may not include these terms. The source terms for moisture variables, :math:`\mathbf{F_{p}}`, :math:`\mathbf{F_{n}}`, :math:`\mathbf{G_{p}}`, and their corresponding impact on potential temperature, :math:`H_{n}` and :math:`H_{p}`, and the terminal velocity, :math:`\mathbf{w_{t}}` are specific to the employed model. For the Kessler microphysics scheme, these terms are detailed in :ref:`sec:Kessler Microphysics model <Microphysics>`.
Loading