Skip to content

Commit

Permalink
Update ipm.tex (#6)
Browse files Browse the repository at this point in the history
* Update pr-comment.yml

* Update ipm.tex

* Fix some equations

* Update ipm.tex

* Fix another equation in ipm.tex

* Use hyperref
  • Loading branch information
amontoison authored Apr 28, 2024
1 parent cd1aef2 commit e7f2cc8
Show file tree
Hide file tree
Showing 4 changed files with 27 additions and 22 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/pr-comment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,6 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
prefix: "Status:"
prefix: "Here is the compiled"
format: "name"
addTo: "pull"
2 changes: 1 addition & 1 deletion tex/biblio.bib
Original file line number Diff line number Diff line change
Expand Up @@ -451,7 +451,7 @@ @article{chen-davis-hager-rajamanickam-2008
@techreport{fowkes-lister-montoison-orban-2024,
author = {Fowkes, Jaroslav and Lister, Andrew and Montoison, Alexis and Orban, Dominique},
pages = {1-5},
title = {LibHSL: the ultimate collection for large-scale scientific computation},
title = {{LibHSL: the ultimate collection for large-scale scientific computation}},
year = {2024},
number = {G-2024-06},
type = {{Les Cahiers du GERAD}},
Expand Down
8 changes: 7 additions & 1 deletion tex/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,14 @@
\usepackage{booktabs}
\usepackage{array}
\usepackage{tikz}
% \usepackage{cleveref} % cleveref is not working with Springer journal classes
\usepackage{xspace}
\usepackage[hidelinks]{hyperref}
\hypersetup{
colorlinks=false,
urlbordercolor=white,
breaklinks=true
}
% \usepackage{cleveref} % cleveref is not working with Springer journal classes

% \newtheorem{theorem}{Theorem}[section]
% \newtheorem{lemma}[theorem]{Lemma}
Expand Down
37 changes: 18 additions & 19 deletions tex/sections/ipm.tex
Original file line number Diff line number Diff line change
Expand Up @@ -143,12 +143,12 @@ \subsection{Solving the KKT conditions with the interior-point method}
\setlength\arraycolsep{5pt}
\tag{$K_3$}
\begin{bmatrix}
W_k & 0 & G_k^\top & H_k^\top & -I & \phantom{-}0 \\
0 & 0 & 0\phantom{^\top} & I\phantom{^\top} & \phantom{-}0 & -I \\
G_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
H_k & I & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
U_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}X_k & \phantom{-}0 \\
0 & V_k & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}S_k
W_k & 0 & G_k^\top & H_k^\top & -I & \phantom{-}0 \\
0 & 0 & 0\phantom{^\top} & I\phantom{^\top} & \phantom{-}0 & -I \\
G_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
H_k & I & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
U_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}X_k & \phantom{-}0 \\
0 & V_k & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}S_k
\end{bmatrix}
\begin{bmatrix}
d_x \\
Expand Down Expand Up @@ -206,24 +206,23 @@ \subsection{Solving the KKT conditions with the interior-point method}
\end{equation}
with the diagonal matrices $D_x := X^{-1} U$ and $D_s := S^{-1} V$.
The vectors forming the right-hand-sides are given respectively by
$r_1 := \nabla f(x) + \nabla g(x)^\top y + \nabla h(x)^\top z + \mu X^{-1} e$,
$r_2 := z + \mu S^{-1} e$,
$r_1 := \nabla f(x) + \nabla g(x)^\top y + \nabla h(x)^\top z - \mu X^{-1} e$,
$r_2 := z - \mu S^{-1} e$,
$r_3 := g(x)$,
$r_4 := h(x) + s$.
Once \eqref{eq:kkt:augmented} solved, we recover the updates on bound multipliers with
$d_u = - X^{-1}(U d_x + X u - \mu e)$ and
$d_v = - S^{-1}(V d_s + S v - \mu e)$.
$d_u = - X^{-1}(U d_x - \mu e) - u$ and
$d_v = - S^{-1}(V d_s - \mu e) - v$.

Note that we have added additional regularization terms $\delta_w \geq 0 $
and $\delta_c \geq 0$ in \eqref{eq:kkt:augmented}, to ensure the
matrix is invertible.
The augmented matrix \eqref{eq:kkt:augmented} is non-singular
if and only if the Jacobian $J = \begin{bmatrix} G & 0 \\ H & I \end{bmatrix}$
Without the regularization terms in \eqref{eq:kkt:augmented}, the augmented KKT system is non-singular
if and only if the Jacobian $J = \begin{bmatrix} G \; &\; 0 \\ H \;&\; I \end{bmatrix}$
is full row-rank and the matrix $\begin{bmatrix} W + D_x & 0 \\ 0 & D_s \end{bmatrix}$
projected onto the null-space of the Jacobian $J$ is positive-definite~\cite{benzi2005numerical}.
The condition is satisfied if the inertia of the matrix is $(n + m_i, m_i + m_e, 0)$
(here the inertia is defined as the respective numbers of positive, negative and
null eigenvalues).
The condition is satisfied if the inertia of the matrix is $(n + m_i, m_i + m_e, 0)$.
The inertia is defined as the respective numbers of positive, negative and zero eigenvalues.
We use the inertia-controlling method introduced in \cite{wachter2006implementation}
to regularize the augmented matrix by adding multiple of the identity
on the diagonal of \eqref{eq:kkt:augmented} if the inertia is not $(n+m_i, m_e+m_i, 0)$.
Expand All @@ -236,7 +235,7 @@ \subsection{Solving the KKT conditions with the interior-point method}
linear and convex quadratic programming \cite{gondzio-2012} (when paired
with a suitable preconditioner). We also refer to \cite{cao-seth-laird-2016}
for an efficient implementation of a preconditioned conjugate gradient
on GPU, for solving the Newton step arising in an Augmented-Lagrangian Interior-Point
on GPU, for solving the Newton step arising in an augmented Lagrangian interior-point
approach.

\paragraph{Condensed KKT system.}
Expand All @@ -249,8 +248,8 @@ \subsection{Solving the KKT conditions with the interior-point method}
\tag{$K_1$}
\setlength\arraycolsep{3pt}
\begin{bmatrix}
K & G^\top \\
G & -\delta_c I \phantom{^\top}
K & \phantom{-} G^\top \\
G & -\delta_c I
\end{bmatrix}
\begin{bmatrix}
d_x \\ d_y
Expand All @@ -274,7 +273,7 @@ \subsection{Solving the KKT conditions with the interior-point method}
\end{equation}
Using the solution of the system~\eqref{eq:kkt:condensed},
we recover the updates on the slacks and inequality multipliers with
$d_z = -C r_2 + D_H(H d_x + r_4)$ and $d_s = -(D_s + \delta_w I)^{-1}(r_2 - d_z)$.
$d_z = -C r_2 + D_H(H d_x + r_4)$ and $d_s = -(D_s + \delta_w I)^{-1}(r_2 + d_z)$.
Using Sylvester's law of inertia, we can prove that
\begin{equation}
\label{eq:ipm:inertia}
Expand Down

0 comments on commit e7f2cc8

Please sign in to comment.