Skip to content

Commit

Permalink
Fix some equations
Browse files Browse the repository at this point in the history
  • Loading branch information
amontoison committed Apr 20, 2024
1 parent 1aaf467 commit ef09b73
Showing 1 changed file with 10 additions and 10 deletions.
20 changes: 10 additions & 10 deletions tex/sections/ipm.tex
Original file line number Diff line number Diff line change
Expand Up @@ -143,12 +143,12 @@ \subsection{Solving the KKT conditions with the interior-point method}
\setlength\arraycolsep{5pt}
\tag{$K_3$}
\begin{bmatrix}
W_k & 0 & G_k^\top & H_k^\top & -I & \phantom{-}0 \\
0 & 0 & 0\phantom{^\top} & I\phantom{^\top} & \phantom{-}0 & -I \\
G_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
H_k & I & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
U_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}X_k & \phantom{-}0 \\
0 & V_k & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}S_k
W_k & 0 & G_k^\top & H_k^\top & -I & \phantom{-}0 \\
0 & 0 & 0\phantom{^\top} & I\phantom{^\top} & \phantom{-}0 & -I \\
G_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
H_k & I & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}0 \\
U_k & 0 & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}X_k & \phantom{-}0 \\
0 & V_k & 0\phantom{^\top} & 0\phantom{^\top} & \phantom{-}0 & \phantom{-}S_k
\end{bmatrix}
\begin{bmatrix}
d_x \\
Expand Down Expand Up @@ -206,13 +206,13 @@ \subsection{Solving the KKT conditions with the interior-point method}
\end{equation}
with the diagonal matrices $D_x := X^{-1} U$ and $D_s := S^{-1} V$.
The vectors forming the right-hand-sides are given respectively by
$r_1 := \nabla f(x) + \nabla g(x)^\top y + \nabla h(x)^\top z + \mu X^{-1} e$,
$r_2 := z + \mu S^{-1} e$,
$r_1 := \nabla f(x) + \nabla g(x)^\top y + \nabla h(x)^\top z - \mu X^{-1} e$,
$r_2 := z - \mu S^{-1} e$,
$r_3 := g(x)$,
$r_4 := h(x) + s$.
Once \eqref{eq:kkt:augmented} solved, we recover the updates on bound multipliers with
$d_u = - X^{-1}(U d_x + X u - \mu e)$ and
$d_v = - S^{-1}(V d_s + S v - \mu e)$.
$d_u = - X^{-1}(U d_x - \mu e) - u$ and
$d_v = - S^{-1}(V d_s - \mu e) - v$.

Note that we have added additional regularization terms $\delta_w \geq 0 $
and $\delta_c \geq 0$ in \eqref{eq:kkt:augmented}, to ensure the
Expand Down

0 comments on commit ef09b73

Please sign in to comment.