Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: modified the sentence encoder to tokenize a text before encoding it #248

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 15 additions & 2 deletions laser_encoders/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,13 @@ encoder = initialize_encoder(lang="igbo")
embeddings = encoder.encode_sentences([tokenized_sentence])
```

When initializing the encoder, you have the option to enable both tokenization and encoding by setting the `tokenize` flag to `True`. Below is an example of how to use it:
```py
encoder = initialize_encoder(lang="igbo", spm=True, tokenize=True)
embeddings = encoder("nnọọ, kedu ka ị mere")
```
>setting the `spm` flag to `True` tells the encoder to also download the accompanying spm model

**Supported Languages:** You can specify any language from the [FLORES200](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200) dataset. This includes both languages identified by their full codes (like "ibo_Latn") and simpler alternatives (like "igbo").

## Downloading the pre-trained models
Expand All @@ -61,13 +68,19 @@ python -m laser_encoders.download_models --model-dir=path/to/model/directory

> For a comprehensive list of available arguments, you can use the `--help` command with the download_models script.

Once you have successfully downloaded the models, you can utilize the `LaserTokenizer` to tokenize text in your desired language. Here's an example of how you can achieve this:
Once you have successfully downloaded the models, you can utilize the `SentenceEncoder` to tokenize and encode your text in your desired language. Here's an example of how you can achieve this:

```py
from laser_encoders.laser_tokenizer import LaserTokenizer
from laser_encoders.models import SentenceEncoder
from pathlib import Path

encoder = SentenceEncoder(model_path=path/to/downloaded/model, spm_model=Path(path/to/spm_model), spm_vocab=path/to/cvocab)
embeddings = encoder("This is a test sentence.")
```
If you want to perform tokenization seperately, you can do this below:
```py
from laser_encoders.laser_tokenizer import LaserTokenizer

tokenizer = LaserTokenizer(spm_model=Path(path/to/spm_model))

tokenized_sentence = tokenizer.tokenize("This is a test sentence.")
Expand Down
18 changes: 13 additions & 5 deletions laser_encoders/download_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ def initialize_encoder(
model_dir: str = None,
spm: bool = True,
laser: str = None,
tokenize: bool = False,
):
downloader = LaserModelDownloader(model_dir)
if laser is not None:
Expand Down Expand Up @@ -146,12 +147,19 @@ def initialize_encoder(

model_dir = downloader.model_dir
model_path = os.path.join(model_dir, f"{file_path}.pt")
spm_path = os.path.join(model_dir, f"{file_path}.cvocab")

if not os.path.exists(spm_path):
spm_vocab = os.path.join(model_dir, f"{file_path}.cvocab")
spm_model = None
if not os.path.exists(spm_vocab):
# if there is no cvocab for the laser3 lang use laser2 cvocab
spm_path = os.path.join(model_dir, "laser2.cvocab")
return SentenceEncoder(model_path=model_path, spm_vocab=spm_path)
spm_vocab = os.path.join(model_dir, "laser2.cvocab")
if tokenize:
spm_model = os.path.join(model_dir, f"{file_path}.spm")
if not os.path.exists(spm_model):
spm_model = os.path.join(model_dir, "laser2.spm")

return SentenceEncoder(
model_path=model_path, spm_vocab=spm_vocab, spm_model=spm_model
)


def initialize_tokenizer(lang: str = None, model_dir: str = None, laser: str = None):
Expand Down
17 changes: 17 additions & 0 deletions laser_encoders/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import re
import sys
from collections import namedtuple
from pathlib import Path

import numpy as np
import torch
Expand All @@ -25,6 +26,8 @@
from fairseq.models.transformer import Embedding, TransformerEncoder
from fairseq.modules import LayerNorm

from laser_encoders.laser_tokenizer import LaserTokenizer

SPACE_NORMALIZER = re.compile(r"\s+")
Batch = namedtuple("Batch", "srcs tokens lengths")

Expand All @@ -43,13 +46,18 @@ def __init__(
max_sentences=None,
max_tokens=None,
spm_vocab=None,
spm_model=None,
cpu=False,
fp16=False,
verbose=False,
sort_kind="quicksort",
):
if verbose:
logger.info(f"loading encoder: {model_path}")
self.spm_model = spm_model
if self.spm_model:
self.tokenizer = LaserTokenizer(spm_model=Path(self.spm_model))

self.use_cuda = torch.cuda.is_available() and not cpu
self.max_sentences = max_sentences
self.max_tokens = max_tokens
Expand Down Expand Up @@ -83,6 +91,15 @@ def __init__(
self.encoder.eval()
self.sort_kind = sort_kind

def __call__(self, sentences):
CaptainVee marked this conversation as resolved.
Show resolved Hide resolved
if self.spm_model:
CaptainVee marked this conversation as resolved.
Show resolved Hide resolved
sentences = self.tokenizer(sentences)
return self.encode_sentences(sentences)
else:
raise ValueError(
"Either initialize the encoder with an spm_model or pre-tokenize and use the encode_sentences method."
)

def _process_batch(self, batch):
tokens = batch.tokens
lengths = batch.lengths
Expand Down
Loading