Skip to content

Commit

Permalink
gguf-py, convert-hf : add model conversion support for T5ForCondition…
Browse files Browse the repository at this point in the history
…alGeneration and T5WithLMHeadModel
  • Loading branch information
sszymczy committed Jun 21, 2024
1 parent 557b653 commit da4f661
Show file tree
Hide file tree
Showing 4 changed files with 321 additions and 4 deletions.
112 changes: 111 additions & 1 deletion convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path,
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
if self.ftype == gguf.LlamaFileType.GUESSED:
Expand Down Expand Up @@ -2725,6 +2725,116 @@ def write_tensors(self):
raise ValueError(f"Unprocessed experts: {experts}")


@Model.register("T5ForConditionalGeneration")
@Model.register("T5WithLMHeadModel")
class T5Model(Model):
model_arch = gguf.MODEL_ARCH.T5

def set_vocab(self):
# to avoid TypeError: Descriptors cannot be created directly
# exception when importing sentencepiece_model_pb2
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
from sentencepiece import SentencePieceProcessor
from sentencepiece import sentencepiece_model_pb2 as model

tokenizer_path = self.dir_model / 'spiece.model'

tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []

if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")

sentencepiece_model = model.ModelProto()
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM

tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))

vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())

tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size

for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)

toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE

tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype

added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue

tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED

if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)

self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_add_space_prefix(add_prefix)
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
if precompiled_charsmap:
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)

special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)

self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_add_eos_token(True)

def set_gguf_parameters(self):
self.gguf_writer.add_name("T5")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
self.gguf_writer.add_block_count(self.hparams["num_layers"])
self.gguf_writer.add_head_count(self.hparams["num_heads"])
self.gguf_writer.add_key_length(self.hparams["d_kv"])
self.gguf_writer.add_value_length(self.hparams["d_kv"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
self.gguf_writer.add_file_type(self.ftype)


###### CONVERSION LOGIC ######


Expand Down
87 changes: 87 additions & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@ class LLM:
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
POOLING_TYPE = "{arch}.pooling_type"
LOGIT_SCALE = "{arch}.logit_scale"
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"

class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
Expand All @@ -62,6 +63,7 @@ class Attention:
CAUSAL = "{arch}.attention.causal"
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"

class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
Expand Down Expand Up @@ -97,6 +99,8 @@ class Tokenizer:
ADD_BOS = "tokenizer.ggml.add_bos_token"
ADD_EOS = "tokenizer.ggml.add_eos_token"
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
HF_JSON = "tokenizer.huggingface.json"
RWKV = "tokenizer.rwkv.world"
CHAT_TEMPLATE = "tokenizer.chat_template"
Expand Down Expand Up @@ -149,6 +153,7 @@ class MODEL_ARCH(IntEnum):
OLMO = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
T5 = auto()


class MODEL_TENSOR(IntEnum):
Expand Down Expand Up @@ -200,6 +205,32 @@ class MODEL_TENSOR(IntEnum):
ATTN_KV_B = auto()
ATTN_Q_A_NORM = auto()
ATTN_KV_A_NORM = auto()
DEC_ATTN_NORM = auto()
DEC_ATTN_Q = auto()
DEC_ATTN_K = auto()
DEC_ATTN_V = auto()
DEC_ATTN_OUT = auto()
DEC_ATTN_REL_B = auto()
DEC_CROSS_ATTN_NORM = auto()
DEC_CROSS_ATTN_Q = auto()
DEC_CROSS_ATTN_K = auto()
DEC_CROSS_ATTN_V = auto()
DEC_CROSS_ATTN_OUT = auto()
DEC_CROSS_ATTN_REL_B = auto()
DEC_FFN_NORM = auto()
DEC_FFN_DOWN = auto()
DEC_FFN_UP = auto()
DEC_OUTPUT_NORM = auto()
ENC_ATTN_NORM = auto()
ENC_ATTN_Q = auto()
ENC_ATTN_K = auto()
ENC_ATTN_V = auto()
ENC_ATTN_OUT = auto()
ENC_ATTN_REL_B = auto()
ENC_FFN_NORM = auto()
ENC_FFN_DOWN = auto()
ENC_FFN_UP = auto()
ENC_OUTPUT_NORM = auto()


MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
Expand Down Expand Up @@ -237,6 +268,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.T5: "t5",
}

TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
Expand Down Expand Up @@ -288,6 +320,32 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
}

MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
Expand Down Expand Up @@ -808,6 +866,35 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.T5: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.DEC_ATTN_NORM,
MODEL_TENSOR.DEC_ATTN_Q,
MODEL_TENSOR.DEC_ATTN_K,
MODEL_TENSOR.DEC_ATTN_V,
MODEL_TENSOR.DEC_ATTN_OUT,
MODEL_TENSOR.DEC_ATTN_REL_B,
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
MODEL_TENSOR.DEC_CROSS_ATTN_K,
MODEL_TENSOR.DEC_CROSS_ATTN_V,
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
MODEL_TENSOR.DEC_FFN_NORM,
MODEL_TENSOR.DEC_FFN_DOWN,
MODEL_TENSOR.DEC_FFN_UP,
MODEL_TENSOR.DEC_OUTPUT_NORM,
MODEL_TENSOR.ENC_ATTN_NORM,
MODEL_TENSOR.ENC_ATTN_Q,
MODEL_TENSOR.ENC_ATTN_K,
MODEL_TENSOR.ENC_ATTN_V,
MODEL_TENSOR.ENC_ATTN_OUT,
MODEL_TENSOR.ENC_ATTN_REL_B,
MODEL_TENSOR.ENC_FFN_NORM,
MODEL_TENSOR.ENC_FFN_DOWN,
MODEL_TENSOR.ENC_FFN_UP,
MODEL_TENSOR.ENC_OUTPUT_NORM,
],
# TODO
}

Expand Down
21 changes: 18 additions & 3 deletions gguf-py/gguf/gguf_writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,6 +400,9 @@ def add_expert_shared_feed_forward_length(self, length: int) -> None:
def add_parallel_residual(self, use: bool) -> None:
self.add_bool(Keys.LLM.USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)

def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)

def add_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)

Expand Down Expand Up @@ -448,6 +451,9 @@ def add_q_lora_rank(self, length: int) -> None:
def add_kv_lora_rank(self, length: int) -> None:
self.add_uint32(Keys.Attention.KV_LORA_RANK.format(arch=self.arch), length)

def add_relative_attn_buckets_count(self, value: int) -> None:
self.add_uint32(Keys.Attention.REL_BUCKETS_COUNT.format(arch=self.arch), value)

def add_pooling_type(self, value: PoolingType) -> None:
self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value)

Expand Down Expand Up @@ -538,6 +544,12 @@ def add_add_eos_token(self, value: bool) -> None:
def add_add_space_prefix(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)

def add_remove_extra_whitespaces(self, value: bool) -> None:
self.add_bool(Keys.Tokenizer.REMOVE_EXTRA_WS, value)

def add_precompiled_charsmap(self, charsmap: Sequence[bytes]) -> None:
self.add_array(Keys.Tokenizer.PRECOMPILED_CHARSMAP, charsmap)

def add_chat_template(self, value: str | Sequence[Mapping[str, str]]) -> None:
if not isinstance(value, str):
template_default = None
Expand Down Expand Up @@ -599,9 +611,12 @@ def _pack_val(self, val: Any, vtype: GGUFValueType, add_vtype: bool) -> bytes:
kv_data += self._pack("Q", len(encoded_val))
kv_data += encoded_val
elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and val:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
if isinstance(val, bytes):
ltype = GGUFValueType.UINT8
else:
ltype = GGUFValueType.get_type(val[0])
if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
raise ValueError("All items in a GGUF array should be of the same type")
kv_data += self._pack("I", ltype)
kv_data += self._pack("Q", len(val))
for item in val:
Expand Down
Loading

0 comments on commit da4f661

Please sign in to comment.