Skip to content

Latest commit

 

History

History
73 lines (51 loc) · 3.25 KB

README_zh-CN.md

File metadata and controls

73 lines (51 loc) · 3.25 KB

ymir-executor 使用文档 English | 简体中文

比较

docker image finetune tensorboard args/cfg options framework onnx pretrained weight
yolov4 ? ✔️ darknet + mxnet local
yolov5 ✔️ ✔️ ✔️ pytorch ✔️ local+online
yolov7 ✔️ ✔️ ✔️ pytorch local+online
mmdetection ✔️ ✔️ ✔️ pytorch local+online
detectron2 ✔️ ✔️ ✔️ pytorch online
vidt ? ✔️ ✔️ pytorch online
nanodet ✔️ ✔️ pytorch_lightning local+online
  • online 预训练权重可能在训练时通过网络下载

  • local 预训练权重在构建镜像时复制到了镜像

benchmark

  • 训练集: voc2012-train 5717 images
  • 测试集: voc2012-val 5823 images
  • 图像大小: 640 (nanodet为416, yolov4为608)

由于 coco 数据集包含 voc 数据集中的类, 因此这个对比并不公平, 仅供参考

gpu: single Tesla P4

docker image batch size epoch number model voc2012 val map50 training time note
yolov5 16 100 yolov5s 70.05% 9h coco-pretrained
vidt 2 100 swin-nano 54.13% 2d imagenet-pretrained
yolov4 4 20000 steps yolov4 66.18% 2d imagenet-pretrained
yolov7 16 100 yolov7-tiny 70% 8h coco-pretrained

gpu: single GeForce GTX 1080 Ti

docker image image size batch size epoch number model voc2012 val map50 training time note
yolov4 608 64/32 20000 steps yolov4 72.73% 6h imagenet-pretrained
yolov5 640 16 100 yolov5s 70.35% 2h coco-pretrained
yolov7 640 16 100 yolov7-tiny 70.4% 5h coco-pretrained
mmdetection 640 16 100 yolox_tiny 66.2% 5h coco-pretrained
detectron2 640 2 20000 steps retinanet_R_50_FPN_1x 53.54% 2h imagenet-pretrained
nanodet 416 16 100 nanodet-plus-m_416 58.63% 5h imagenet-pretrained

如何导入预训练模型

参考