-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b033d58
commit 3777b76
Showing
1 changed file
with
52 additions
and
45 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,63 +1,70 @@ | ||
import unittest | ||
from functools import cached_property | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from depiction.calibration.models.linear_model import LinearModel | ||
|
||
|
||
class TestLinearModel(unittest.TestCase): | ||
def setUp(self) -> None: | ||
self.mock_coef = [1, 2] | ||
@pytest.fixture | ||
def mock_coef() -> list[float]: | ||
return [1, 2] | ||
|
||
|
||
@pytest.fixture | ||
def mock_model(mock_coef: list[float]) -> LinearModel: | ||
return LinearModel(coef=mock_coef) | ||
|
||
|
||
def test_coef(mock_model: LinearModel) -> None: | ||
np.testing.assert_array_equal(np.array([1, 2]), mock_model.coef, strict=True) | ||
|
||
|
||
def test_raise_error_when_invalid_coef() -> None: | ||
with pytest.raises(ValueError): | ||
LinearModel(coef=[1, 2, 3]) | ||
|
||
|
||
def test_is_zero_when_false(mock_model: LinearModel) -> None: | ||
assert not mock_model.is_zero | ||
|
||
|
||
def test_is_zero_when_true(mock_model: LinearModel) -> None: | ||
mock_coef = [0.0, 0] | ||
assert LinearModel(coef=mock_coef).is_zero | ||
|
||
@cached_property | ||
def mock_model(self): | ||
return LinearModel(coef=self.mock_coef) | ||
|
||
def test_coef(self) -> None: | ||
np.testing.assert_array_equal(np.array([1, 2]), self.mock_model.coef, strict=True) | ||
def test_predict(mock_model: LinearModel) -> None: | ||
np.testing.assert_array_equal( | ||
np.array([3.0, 5]), | ||
mock_model.predict([1.0, 2]), | ||
) | ||
|
||
def test_raise_error_when_invalid_coef(self) -> None: | ||
with self.assertRaises(ValueError): | ||
LinearModel(coef=[1, 2, 3]) | ||
|
||
def test_is_zero_when_false(self) -> None: | ||
self.assertFalse(self.mock_model.is_zero) | ||
def test_identity() -> None: | ||
np.testing.assert_array_equal( | ||
np.array([0, 1]), | ||
LinearModel.identity().coef, | ||
) | ||
|
||
def test_is_zero_when_true(self) -> None: | ||
self.assertTrue(LinearModel.zero().is_zero) | ||
self.mock_coef = [0.0, 0] | ||
self.assertTrue(self.mock_model.is_zero) | ||
|
||
def test_predict(self) -> None: | ||
np.testing.assert_array_equal( | ||
np.array([3.0, 5]), | ||
self.mock_model.predict([1.0, 2]), | ||
) | ||
def test_zero() -> None: | ||
np.testing.assert_array_equal( | ||
np.array([0, 0]), | ||
LinearModel.zero().coef, | ||
) | ||
|
||
def test_identity(self) -> None: | ||
np.testing.assert_array_equal( | ||
np.array([0, 1]), | ||
LinearModel.identity().coef, | ||
) | ||
|
||
def test_zero(self) -> None: | ||
np.testing.assert_array_equal( | ||
np.array([0, 0]), | ||
LinearModel.zero().coef, | ||
) | ||
def test_fit_lsq() -> None: | ||
model = LinearModel.fit_lsq(np.array([1, 2, 3]), np.array([4, 5, 6])) | ||
assert model.intercept == pytest.approx(3, abs=1e-7) | ||
assert model.slope == pytest.approx(1, abs=1e-7) | ||
|
||
def test_fit_lsq(self) -> None: | ||
model = LinearModel.fit_lsq(np.array([1, 2, 3]), np.array([4, 5, 6])) | ||
self.assertAlmostEqual(3, model.intercept, places=7) | ||
self.assertAlmostEqual(1, model.slope, places=7) | ||
|
||
def test_fit_linear_siegelslopes(self) -> None: | ||
mock_x = np.array([100, 200, 300]) | ||
mock_y = np.array([1, 2, 3]) | ||
model = LinearModel.fit_siegelslopes(mock_x, mock_y) | ||
np.testing.assert_array_almost_equal(np.array([0, 0.01]), model.coef, decimal=7) | ||
def test_fit_linear_siegelslopes() -> None: | ||
mock_x = np.array([100, 200, 300]) | ||
mock_y = np.array([1, 2, 3]) | ||
model = LinearModel.fit_siegelslopes(mock_x, mock_y) | ||
np.testing.assert_array_almost_equal(np.array([0, 0.01]), model.coef, decimal=7) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() | ||
pytest.main() |