-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c944ab7
commit 615763e
Showing
6 changed files
with
734 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import gymnasium as gym | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from stable_baselines3 import DDPG | ||
from stable_baselines3.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise | ||
import random | ||
env = gym.make("Pendulum-v1",render_mode="human") | ||
|
||
def Random_games(): | ||
|
||
action_size = env.action_space.shape[0] | ||
|
||
for episode in range(10): | ||
env.reset() | ||
|
||
while True: | ||
env.render() | ||
|
||
action = np.random.uniform(-1.0,1.0,size=action_size) | ||
|
||
next_state,reward, done, info,_ = env.step(action) | ||
print(f'Next state{len(next_state)}\n',f'reward:{reward}') | ||
|
||
if done: | ||
break | ||
def dpg_algorithm(): | ||
# The noise objects for DDPG | ||
n_actions = env.action_space.shape[-1] | ||
action_noise = NormalActionNoise(mean=np.zeros(n_actions), sigma=0.1 * np.ones(n_actions)) | ||
|
||
model = DDPG("MlpPolicy", env, action_noise=action_noise, verbose=1) | ||
model.learn(total_timesteps=10000, log_interval=10) | ||
vec_env = model.get_env() | ||
|
||
obs = vec_env.reset() | ||
while True: | ||
action, _states = model.predict(obs) | ||
obs, rewards, dones, info = vec_env.step(action) | ||
env.render() | ||
|
||
# Parameter | ||
setpoint = 22.0 # Sollwert in °C | ||
initial_temp = 15.0 # Starttemperatur in °C | ||
ambient_temp = 15.0 # Außentemperatur in °C | ||
time_step = 1 # Zeitintervall in Minuten | ||
total_time =5000 # Gesamte Simulationszeit in Minuten | ||
|
||
# PID-Koeffizienten | ||
Kp = 10.0 # Proportionaler Koeffizient | ||
Ti = 100.01 # Integraler Koeffizient | ||
Td = 250.0 # Differenzieller Koeffizient | ||
|
||
# Heizwendel Parameter | ||
coil_mass = 10.0 # Masse der Heizwendel (kg) | ||
specific_heat_coil = 0.5 # Spezifische Wärmekapazität der Heizwendel (J/(kg*K)) | ||
coil_temp = initial_temp # Anfangstemperatur der Heizwendel | ||
heat_transfer_coeff = 0.1 # Wärmeübertragungskoeffizient (W/K) | ||
|
||
# Initialisierung | ||
time = np.arange(0, total_time + time_step, time_step) | ||
temperature = np.zeros_like(time,dtype=float) | ||
setpoints = np.zeros_like(time,dtype=float) | ||
temperature[0] = initial_temp | ||
setpoints[0]= setpoint | ||
# PID-Regler Variablen | ||
integral = 0 | ||
previous_error = 0 | ||
|
||
|
||
# Simulation | ||
for i in range(1, len(time)): | ||
|
||
#if i%600 ==0: | ||
# setpoint+= random.randint(-2,2) | ||
error = setpoint - temperature[i - 1] | ||
integral += error * time_step | ||
derivative = (error - previous_error) / time_step | ||
|
||
# PID-Regler Berechnung | ||
control_signal = Kp * error + (Kp/Ti)*integral + Kp*Td * derivative | ||
|
||
# Begrenzung der Steuergröße und Normierung auf 0 bis 1 | ||
control_signal = np.clip(control_signal, 0, 100) / 100 | ||
|
||
# Heizwendel-Erwärmung | ||
power_input = control_signal * 100 # z.B. in Watt | ||
coil_temp += (power_input - heat_transfer_coeff * (coil_temp - ambient_temp)) / (coil_mass * specific_heat_coil) * time_step | ||
print(f"difference:{coil_temp-ambient_temp}",f"Power:{power_input}") | ||
|
||
# Wärmeübertragung zum Raum | ||
heating_power = heat_transfer_coeff * (coil_temp - temperature[i - 1]) | ||
|
||
|
||
# Temperaturänderung des Raums | ||
delta_temp = heating_power * time_step / 60 | ||
temperature[i] = temperature[i - 1] + delta_temp | ||
|
||
# Temperaturveränderung durch Umgebung | ||
temperature[i] += (ambient_temp - temperature[i]) * 0.01 | ||
|
||
# Update der PID-Variablen | ||
previous_error = error | ||
setpoints[i]+=setpoint | ||
|
||
# Plotten der Ergebnisse | ||
plt.plot(time, temperature, label='Raumtemperatur') | ||
plt.plot(time,setpoints, color='r', linestyle='--', label='Sollwert') | ||
plt.xlabel('Zeit (Minuten)') | ||
plt.ylabel('Temperatur (°C)') | ||
plt.title('Temperaturregelung mit normiertem PID-Algorithmus') | ||
plt.legend() | ||
plt.grid(True) | ||
plt.show() |
Oops, something went wrong.