-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwali_cifar10.py
208 lines (170 loc) · 7.3 KB
/
wali_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import matplotlib.pyplot as plt
from torch.optim import Adam
from torch.utils import data
from torch.nn import Conv2d, ConvTranspose2d, BatchNorm2d, LeakyReLU, ReLU, Tanh
from util import DeterministicConditional, GaussianConditional, JointCritic, WALI
from torchvision import datasets, transforms, utils
cudnn.benchmark = True
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
# training hyperparameters
BATCH_SIZE = 64
ITER = 200000
IMAGE_SIZE = 32
NUM_CHANNELS = 3
DIM = 128
NLAT = 100
LEAK = 0.2
C_ITERS = 5 # critic iterations
EG_ITERS = 1 # encoder / generator iterations
LAMBDA = 10 # strength of gradient penalty
LEARNING_RATE = 1e-4
BETA1 = 0.5
BETA2 = 0.9
# def create_encoder():
# mapping = nn.Sequential(
# Conv2d(NUM_CHANNELS, 32, 5, 1, bias=False), BatchNorm2d(32), LeakyReLU(LEAK, inplace=True),
# Conv2d(32, 64, 4, 2, bias=False), BatchNorm2d(64), LeakyReLU(LEAK, inplace=True),
# Conv2d(64, 128, 4, 1, bias=False), BatchNorm2d(128), LeakyReLU(LEAK, inplace=True),
# Conv2d(128, 256, 4, 2, bias=False), BatchNorm2d(256), LeakyReLU(LEAK, inplace=True),
# Conv2d(256, 512, 4, 1, bias=False), BatchNorm2d(512), LeakyReLU(LEAK, inplace=True),
# Conv2d(512, 512, 1, 1, bias=False), BatchNorm2d(512), LeakyReLU(LEAK, inplace=True),
# Conv2d(512, 2 * NLAT, 1, 1))
# return GaussianConditional(mapping)
def create_encoder():
mapping = nn.Sequential(
Conv2d(NUM_CHANNELS, DIM, 4, 2, 1, bias=False), BatchNorm2d(DIM), ReLU(inplace=True),
Conv2d(DIM, DIM * 2, 4, 2, 1, bias=False), BatchNorm2d(DIM * 2), ReLU(inplace=True),
Conv2d(DIM * 2, DIM * 4, 4, 2, 1, bias=False), BatchNorm2d(DIM * 4), ReLU(inplace=True),
Conv2d(DIM * 4, DIM * 4, 4, 1, 0, bias=False), BatchNorm2d(DIM * 4), ReLU(inplace=True),
Conv2d(DIM * 4, NLAT, 1, 1, 0))
return DeterministicConditional(mapping)
# def create_generator():
# mapping = nn.Sequential(
# ConvTranspose2d(NLAT, 256, 4, 1, bias=False), BatchNorm2d(256), LeakyReLU(LEAK, inplace=True),
# ConvTranspose2d(256, 128, 4, 2, bias=False), BatchNorm2d(128), LeakyReLU(LEAK, inplace=True),
# ConvTranspose2d(128, 64, 4, 1, bias=False), BatchNorm2d(64), LeakyReLU(LEAK, inplace=True),
# ConvTranspose2d(64, 32, 4, 2, bias=False), BatchNorm2d(32), LeakyReLU(LEAK, inplace=True),
# ConvTranspose2d(32, 32, 5, 1, bias=False), BatchNorm2d(32), LeakyReLU(LEAK, inplace=True),
# ConvTranspose2d(32, 32, 1, 1, bias=False), BatchNorm2d(32), LeakyReLU(LEAK, inplace=True),
# Conv2d(32, NUM_CHANNELS, 1, 1, bias=False), Tanh())
# return DeterministicConditional(mapping)
def create_generator():
mapping = nn.Sequential(
ConvTranspose2d(NLAT, DIM * 4, 4, 1, 0, bias=False), BatchNorm2d(DIM * 4), ReLU(inplace=True),
ConvTranspose2d(DIM * 4, DIM * 2, 4, 2, 1, bias=False), BatchNorm2d(DIM * 2), ReLU(inplace=True),
ConvTranspose2d(DIM * 2, DIM, 4, 2, 1, bias=False), BatchNorm2d(DIM), ReLU(inplace=True),
ConvTranspose2d(DIM, NUM_CHANNELS, 4, 2, 1, bias=False), Tanh())
return DeterministicConditional(mapping)
# def create_critic():
# x_mapping = nn.Sequential(
# Conv2d(NUM_CHANNELS, 32, 5, 1), LeakyReLU(LEAK),
# Conv2d(32, 64, 4, 2), LeakyReLU(LEAK),
# Conv2d(64, 128, 4, 1), LeakyReLU(LEAK),
# Conv2d(128, 256, 4, 2), LeakyReLU(LEAK),
# Conv2d(256, 512, 4, 1), LeakyReLU(LEAK))
# z_mapping = nn.Sequential(
# Conv2d(NLAT, 512, 1, 1, bias=False), LeakyReLU(LEAK),
# Conv2d(512, 512, 1, 1, bias=False), LeakyReLU(LEAK))
# joint_mapping = nn.Sequential(
# Conv2d(1024, 1024, 1, 1), LeakyReLU(LEAK),
# Conv2d(1024, 1024, 1, 1), LeakyReLU(LEAK),
# Conv2d(1024, 1, 1, 1))
# return JointCritic(x_mapping, z_mapping, joint_mapping)
def create_critic():
x_mapping = nn.Sequential(
Conv2d(NUM_CHANNELS, DIM, 4, 2, 1), LeakyReLU(LEAK),
Conv2d(DIM, DIM * 2, 4, 2, 1), LeakyReLU(LEAK),
Conv2d(DIM * 2, DIM * 4, 4, 2, 1), LeakyReLU(LEAK),
Conv2d(DIM * 4, DIM * 4, 4, 1, 0), LeakyReLU(LEAK))
z_mapping = nn.Sequential(
Conv2d(NLAT, 512, 1, 1, 0), LeakyReLU(LEAK),
Conv2d(512, 512, 1, 1, 0), LeakyReLU(LEAK))
joint_mapping = nn.Sequential(
Conv2d(DIM * 4 + 512, 1024, 1, 1, 0), LeakyReLU(LEAK),
Conv2d(1024, 1024, 1, 1, 0), LeakyReLU(LEAK),
Conv2d(1024, 1, 1, 1, 0))
return JointCritic(x_mapping, z_mapping, joint_mapping)
def create_WALI():
E = create_encoder()
G = create_generator()
C = create_critic()
wali = WALI(E, G, C)
return wali
def main():
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
wali = create_WALI().to(device)
optimizerEG = Adam(list(wali.get_encoder_parameters()) + list(wali.get_generator_parameters()),
lr=LEARNING_RATE, betas=(BETA1, BETA2))
optimizerC = Adam(wali.get_critic_parameters(),
lr=LEARNING_RATE, betas=(BETA1, BETA2))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
svhn = datasets.CIFAR10('~/torch/data/CIFAR10', train=True, transform=transform)
loader = data.DataLoader(svhn, BATCH_SIZE, shuffle=True, num_workers=2)
noise = torch.randn(64, NLAT, 1, 1, device=device)
EG_losses, C_losses = [], []
curr_iter = C_iter = EG_iter = 0
C_update, EG_update = True, False
print('Training starts...')
while curr_iter < ITER:
for batch_idx, (x, _) in enumerate(loader, 1):
x = x.to(device)
if curr_iter == 0:
init_x = x
curr_iter += 1
z = torch.randn(x.size(0), NLAT, 1, 1).to(device)
C_loss, EG_loss = wali(x, z, lamb=LAMBDA)
if C_update:
optimizerC.zero_grad()
C_loss.backward()
C_losses.append(C_loss.item())
optimizerC.step()
C_iter += 1
if C_iter == C_ITERS:
C_iter = 0
C_update, EG_update = False, True
continue
if EG_update:
optimizerEG.zero_grad()
EG_loss.backward()
EG_losses.append(EG_loss.item())
optimizerEG.step()
EG_iter += 1
if EG_iter == EG_ITERS:
EG_iter = 0
C_update, EG_update = True, False
curr_iter += 1
else:
continue
# print training statistics
if curr_iter % 100 == 0:
print('[%d/%d]\tW-distance: %.4f\tC-loss: %.4f'
% (curr_iter, ITER, EG_loss.item(), C_loss.item()))
# plot reconstructed images and samples
wali.eval()
real_x, rect_x = init_x[:32], wali.reconstruct(init_x[:32]).detach_()
rect_imgs = torch.cat((real_x.unsqueeze(1), rect_x.unsqueeze(1)), dim=1)
rect_imgs = rect_imgs.view(64, NUM_CHANNELS, IMAGE_SIZE, IMAGE_SIZE).cpu()
genr_imgs = wali.generate(noise).detach_().cpu()
utils.save_image(rect_imgs * 0.5 + 0.5, 'cifar10/rect%d.png' % curr_iter)
utils.save_image(genr_imgs * 0.5 + 0.5, 'cifar10/genr%d.png' % curr_iter)
wali.train()
# save model
if curr_iter % (ITER // 10) == 0:
torch.save(wali.state_dict(), 'cifar10/models/%d.ckpt' % curr_iter)
# plot training loss curve
plt.figure(figsize=(10, 5))
plt.title('Training loss curve')
plt.plot(EG_losses, label='Encoder + Generator')
plt.plot(C_losses, label='Critic')
plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.legend()
plt.savefig('cifar10/loss_curve.png')
if __name__ == "__main__":
main()