Skip to content

Implementation of SECOVARC (The Sentence Encoder with COntextualized Vectors for Argument Reasoning Comprehension), for SemEval-2018 Task 12 - The Argument Reasoning Comprehension Task.

Notifications You must be signed in to change notification settings

galsang/SemEval2018-task12

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SemEval2018-task12

This is the implementation of SECOVARC (The Sentence Encoder with COntextualized Vectors for Argument Reasoning Comprehension), for SemEval-2018 Task 12 - The Argument Reasoning Comprehension Task.

Results

Model Dev Acc(%) Test Acc(%)
Intra-attention (Habernal, et al., 2018) 63.8 55.6
Intra-attention w/context (Habernal, et al., 2018) 63.7 56.0
SECOVARC-last (w/o heuristics) 70.1 55.9
SECOVARC-last (w/ heuristics) 70.6 55.4
SECOVARC-max (w/o heuristics) 68.0 59.1
SECOVARC-max (w/ heuristics) 68.4 59.2

Development Environment

  • OS: Ubuntu 16.04 LTS (64bit)
  • Language: Python 3.6.2
  • Pytorch: 0.3.0

Requirements

Please install the following library requirements specified in the requirements.txt first.

nltk==3.2.4
tensorboardX==1.0
torch==0.3.0
torchtext==0.2.1

Preprocessing

As SECOVARC only accpets one warrant at a time, data manipulation is inevitable. By executing the preprocess.py, you can build a modified version of data (located in .data/arc/preprocessed).

python preprocces.py

Training

python train.py --help

usage: train.py [-h] [--batch-size BATCH_SIZE] [--dropout DROPOUT]
            [--epoch EPOCH] [--gpu GPU] [--hidden-size HIDDEN_SIZE]
            [--heuristics] [--learning-rate LEARNING_RATE] [--model MODEL]
            [--optim OPTIM] [--print-freq PRINT_FREQ] [--pooling POOLING]
            [--word_dim WORD_DIM]

optional arguments:
  -h, --help            show this help message and exit
  --batch-size BATCH_SIZE
  --dropout DROPOUT
  --epoch EPOCH
  --gpu GPU
  --hidden-size HIDDEN_SIZE
  --heuristics
  --learning-rate LEARNING_RATE
  --model MODEL         available: bow, lstm, cove
  --optim OPTIM
  --print-freq PRINT_FREQ
  --pooling POOLING     available: max, last, average, min
  --word_dim WORD_DIM

About

Implementation of SECOVARC (The Sentence Encoder with COntextualized Vectors for Argument Reasoning Comprehension), for SemEval-2018 Task 12 - The Argument Reasoning Comprehension Task.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages