Skip to content

gao-duan/BlueNoise

Repository files navigation

Blue Noise

by Duan Gao

Implement the algorithm introduced in [1].

The blue noise image can be used in Path Tracing to distribute the Monte Carlo noise from white noise to blue noise (I have tested this idea in my own physically based renderer Elegans) , more details are described in [2].

Update[2020-01-06]

  • Add Python binding support (via pybind11)
  • Add support for generating multiple dimensional blue noise texture. (e.g 2D/3D blue noise texture)

Dependencies

Results

1D blue-noise:

Resolution White noise White noise FFT [3] Blue noise Blue noise FFT
32x32
128x128

Here we show the path tracing results comparison of Cornell Box (only 1spp) :

Here I just implement the sorting scheme introduced in the slides [4].

  • sorting all the radiances of same pixel;
  • pick the radiance according to the blue noise value in the same pixel position.
path tracing(spp=1) dithering(spp=1 from 256) path tracing(spp=256) reference
Image
RMSE 0.04736 0.04778 0.003352 -

[1] Georgiev I, Fajardo M. Blue-noise dithered sampling[C]//ACM SIGGRAPH 2016 Talks. ACM, 2016: 35.

https://www.arnoldrenderer.com/research/dither_abstract.pdf

[2] Heitz E, Belcour L. Distributing Monte Carlo Errors as a Blue Noise in Screen Space by Permuting Pixel Seeds Between Frames[C]//Computer Graphics Forum. 2019, 38(4): 149-158.

https://hal.archives-ouvertes.fr/hal-02158423/document

[3] Use ./results/vis_image_freq.py to generate the frequency visualization image. Please see OpenCV for more details.

[4] https://hal.archives-ouvertes.fr/hal-02158423/file/blueNoiseTemporal2019_slides.pdf

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages