Skip to content

Commit

Permalink
python : add check-requirements.sh and GitHub workflow (#4585)
Browse files Browse the repository at this point in the history
* python: add check-requirements.sh and GitHub workflow

This script and workflow forces package versions to remain compatible
across all convert*.py scripts, while allowing secondary convert scripts
to import dependencies not wanted in convert.py.

* Move requirements into ./requirements

* Fail on "==" being used for package requirements (but can be suppressed)

* Enforce "compatible release" syntax instead of ==

* Update workflow

* Add upper version bound for transformers and protobuf

* improve check-requirements.sh

* small syntax change

* don't remove venvs if nocleanup is passed

* See if this fixes docker workflow

* Move check-requirements.sh into ./scripts/

---------

Co-authored-by: Jared Van Bortel <[email protected]>
  • Loading branch information
crasm and cebtenzzre authored Dec 29, 2023
1 parent 68eccbd commit 04ac060
Show file tree
Hide file tree
Showing 16 changed files with 378 additions and 148 deletions.
3 changes: 2 additions & 1 deletion .devops/full-cuda.Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@ ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git

COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements

RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
Expand Down
3 changes: 2 additions & 1 deletion .devops/full-rocm.Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102

COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements

RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
Expand Down
3 changes: 2 additions & 1 deletion .devops/full.Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@ FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git

COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements

RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
Expand Down
3 changes: 2 additions & 1 deletion .devops/main-rocm.Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102

COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements

RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
Expand Down
29 changes: 29 additions & 0 deletions .github/workflows/python-check-requirements.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
name: Python check requirements.txt

on:
push:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'

jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh nocleanup
95 changes: 50 additions & 45 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ def _set_vocab_gpt2(self):
tokens: list[bytearray] = []
toktypes: list[int] = []

from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
Expand Down Expand Up @@ -856,7 +856,7 @@ def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]

self.gguf_writer.add_name(dir_model.name)
self.gguf_writer.add_name(self.dir_model.name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
Expand Down Expand Up @@ -902,7 +902,7 @@ def set_vocab(self):
tokens: list[bytearray] = []
toktypes: list[int] = []

from transformers import AutoTokenizer # type: ignore[attr-defined]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
Expand Down Expand Up @@ -1185,57 +1185,62 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args()


args = parse_args()
def main() -> None:
args = parse_args()

dir_model = args.model
dir_model = args.model

if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")

if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)

ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}

if args.outfile is not None:
fname_out = args.outfile
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")

if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1)
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'

ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
}
print(f"Loading model: {dir_model.name}")

if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
hparams = Model.load_hparams(dir_model)

print(f"Loading model: {dir_model.name}")
with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)

hparams = Model.load_hparams(dir_model)
print("Set model parameters")
model_instance.set_gguf_parameters()

with torch.inference_mode():
model_class = Model.from_model_architecture(hparams["architectures"][0])
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
print("Set model tokenizer")
model_instance.set_vocab()

print("Set model parameters")
model_instance.set_gguf_parameters()
if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()

print("Set model tokenizer")
model_instance.set_vocab()
print(f"Model successfully exported to '{fname_out}'")

if args.vocab_only:
print(f"Exporting model vocab to '{fname_out}'")
model_instance.write_vocab()
else:
print(f"Exporting model to '{fname_out}'")
model_instance.write()

print(f"Model successfully exported to '{fname_out}'")
if __name__ == '__main__':
main()
183 changes: 92 additions & 91 deletions convert-lora-to-ggml.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,95 +47,96 @@ def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_ty
fout.seek((fout.tell() + 31) & -32)


if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)

input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")

model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"

if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)

arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone

with open(input_json, "r") as f:
params = json.load(f)

if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)

if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)

if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)

# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)

with open(output_path, "wb") as fout:
fout.truncate()

write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)

input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")

model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"

if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)

arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone

with open(input_json, "r") as f:
params = json.load(f)

if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)

if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)

if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)

# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)

with open(output_path, "wb") as fout:
fout.truncate()

write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
v = v.T
else:
v = v.float()

t = v.detach().numpy()

prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]

lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)

tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)

if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False

print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)

print(f"Converted {input_json} and {input_model} to {output_path}")

t = v.detach().numpy()

prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]

lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)

tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)

if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False

print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)

print(f"Converted {input_json} and {input_model} to {output_path}")
1 change: 1 addition & 0 deletions convert-persimmon-to-gguf.py
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
#!/usr/bin/env python3
import torch
import os
from pprint import pprint
Expand Down
3 changes: 0 additions & 3 deletions requirements-hf-to-gguf.txt

This file was deleted.

Loading

0 comments on commit 04ac060

Please sign in to comment.