Skip to content

Commit

Permalink
server: benchmark: chat/completions scenario and other llm servers co…
Browse files Browse the repository at this point in the history
…mparison (#5941)

* server: bench: Init a bench scenario with K6
See #5827

* server: bench: EOL EOF

* server: bench: PR feedback and improved k6 script configuration

* server: bench: remove llamacpp_completions_tokens_seconds as it include prompt processing time and it's misleading

server: bench: add max_tokens from SERVER_BENCH_MAX_TOKENS

server: bench: increase truncated rate to 80% before failing

* server: bench: fix doc

* server: bench: change gauge custom metrics to trend

* server: bench: change gauge custom metrics to trend
server: bench: add trend custom metrics for total tokens per second average

* server: bench: doc add an option to debug http request

* server: bench: filter dataset too short and too long sequences

* server: bench: allow to filter out conversation in the dataset based on env variable

* server: bench: fix assistant message sent instead of user message

* server: bench: fix assistant message sent instead of user message

* server : add defrag thold parameter

* server: bench: select prompts based on the current iteration id not randomly to make the bench more reproducible

---------

Co-authored-by: Georgi Gerganov <[email protected]>
  • Loading branch information
phymbert and ggerganov authored Mar 9, 2024
1 parent 77d1ac7 commit 621e86b
Show file tree
Hide file tree
Showing 3 changed files with 216 additions and 0 deletions.
88 changes: 88 additions & 0 deletions examples/server/bench/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
### Server benchmark tools

Benchmark is using [k6](https://k6.io/).

##### Install k6

Follow instruction from: https://k6.io/docs/get-started/installation/

Example for ubuntu:
```shell
snap install k6
```

#### Download a dataset

This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).

```shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

#### Download a model
Example for PHI-2

```shell
../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf
```

#### Start the server
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.

Example:
```shell
server --host localhost --port 8080 \
--model ggml-model-q4_0.gguf \
--cont-batching \
--metrics \
--parallel 8 \
--batch-size 512 \
--ctx-size 4096 \
--log-format text \
-ngl 33
```

#### Run the benchmark

For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
```shell
k6 run script.js --duration 10m --iterations 500 --vus 8
```

The benchmark values can be overridden with:
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
- `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512`
- `SERVER_BENCH_DATASET` path to the benchmark dataset file
- `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024`
- `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048`

Note: the local tokenizer is just a string space split, real number of tokens will differ.

Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):

```shell
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
```

To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`.

#### Metrics

Following metrics are available computed from the OAI chat completions response `usage`:
- `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration`
- `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens`
- `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens`
- `llamacpp_completion_tokens` Trend of `usage.completion_tokens`
- `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens`
- `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'`
- `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'`

The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`.

K6 metrics might be compared against [server metrics](../README.md), with:

```shell
curl http://localhost:8080/metrics
```
120 changes: 120 additions & 0 deletions examples/server/bench/script.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
import http from 'k6/http'
import {check, sleep} from 'k6'
import {SharedArray} from 'k6/data'
import {Counter, Rate, Trend} from 'k6/metrics'
import exec from 'k6/execution';

// Server chat completions prefix
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'

// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8

// Model name to request
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'

// Dataset path
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'

// Max tokens to predict
const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512

// Max prompt tokens
const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024

// Max slot context
const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048

export function setup() {
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
}

const data = new SharedArray('conversations', function () {
const tokenizer = (message) => message.split(/[\s,'".?]/)

return JSON.parse(open(dataset_path))
// Filter out the conversations with less than 2 turns.
.filter(data => data["conversations"].length >= 2)
.filter(data => data["conversations"][0]["from"] === "human")
.map(data => {
return {
prompt: data["conversations"][0]["value"],
n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
}
})
// Filter out too short sequences
.filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
// Filter out too long sequences.
.filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
// Keep only first n prompts
.slice(0, n_prompt)
})

const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')

const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')

const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')

export const options = {
thresholds: {
llamacpp_completions_truncated_rate: [
// more than 80% of truncated input will abort the test
{threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
],
},
duration: '10m',
vus: 8,
}

export default function () {
const conversation = data[exec.scenario.iterationInInstance % data.length]
const payload = {
"messages": [
{
"role": "system",
"content": "You are ChatGPT, an AI assistant.",
},
{
"role": "user",
"content": conversation.prompt,
}
],
"model": model,
"stream": false,
"max_tokens": max_tokens
}

const body = JSON.stringify(payload)

let res = http.post(`${server_url}/chat/completions`, body, {
headers: {'Content-Type': 'application/json'},
timeout: '300s'
})

check(res, {'success completion': (r) => r.status === 200})

if (res.status === 200) {
const completions = res.json()

llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)

llamacpp_completion_tokens.add(completions.usage.completion_tokens)
llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)

llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')

llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
} else {
console.error(`response: ${res.body} request=${payload}`)
}

sleep(0.3)
}
8 changes: 8 additions & 0 deletions examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2133,6 +2133,8 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls} pooling type for embeddings, use model default if unspecified\n");
printf(" -dt N, --defrag-thold N\n");
printf(" KV cache defragmentation threshold (default: %.1f, < 0 - disabled)\n", params.defrag_thold);
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
Expand Down Expand Up @@ -2355,6 +2357,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; break; }
} else if (arg == "--defrag-thold" || arg == "-dt") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.defrag_thold = std::stof(argv[i]);
} else if (arg == "--threads" || arg == "-t") {
if (++i >= argc)
{
Expand Down

0 comments on commit 621e86b

Please sign in to comment.