Skip to content

Commit

Permalink
gguf-py : fix and simplify quantized shape round-trip (#7483)
Browse files Browse the repository at this point in the history
* gguf-py : fix and simplify quantized shape round-trip

* gguf-py : remove unused import
  • Loading branch information
compilade authored May 25, 2024
1 parent d041d2c commit b83bab1
Show file tree
Hide file tree
Showing 5 changed files with 27 additions and 14 deletions.
7 changes: 3 additions & 4 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,11 +313,10 @@ def write_tensors(self):
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32

block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape

# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"""{{{', '.join(str(n) for n in reversed(
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
)}}}"""
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"

# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
Expand Down
6 changes: 5 additions & 1 deletion gguf-py/gguf/gguf_reader.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
import numpy as np
import numpy.typing as npt

from .quants import quant_shape_to_byte_shape

if __name__ == "__main__":
import sys
from pathlib import Path
Expand Down Expand Up @@ -251,6 +253,7 @@ def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
Expand Down Expand Up @@ -279,14 +282,15 @@ def _build_tensors(self, start_offs: int, fields: list[ReaderField]) -> None:
else:
item_count = n_bytes
item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor(
name = tensor_name,
tensor_type = ggml_type,
shape = dims,
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count),
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field,
))
self.tensors = tensors
8 changes: 3 additions & 5 deletions gguf-py/gguf/gguf_writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@
import numpy as np

from .constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
Expand All @@ -26,6 +25,8 @@
TokenType,
)

from .quants import quant_shape_from_byte_shape

logger = logging.getLogger(__name__)


Expand Down Expand Up @@ -229,10 +230,7 @@ def add_tensor_info(
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
if tensor_shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims)
for i in range(n_dims):
Expand Down
16 changes: 15 additions & 1 deletion gguf-py/gguf/quants.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from __future__ import annotations
from typing import Callable
from typing import Callable, Sequence

from numpy.typing import DTypeLike

Expand All @@ -9,6 +9,20 @@
import numpy as np


def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)


def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)


# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32)
Expand Down
4 changes: 1 addition & 3 deletions gguf-py/scripts/gguf-new-metadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,9 +118,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new

for tensor in reader.tensors:
total_bytes += tensor.n_bytes
# Dimensions are written in reverse order, so flip them first
shape = np.flipud(tensor.shape).tolist()
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)

bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)

Expand Down

0 comments on commit b83bab1

Please sign in to comment.