Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OpenELM support #7359

Merged
merged 16 commits into from
Jul 4, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
157 changes: 123 additions & 34 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from enum import IntEnum
from pathlib import Path
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast

import math
import numpy as np
Expand Down Expand Up @@ -669,6 +669,51 @@ def _set_vocab_llama_hf(self):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)

def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
vocab_reader = gguf.GGUFReader(tokenizer_path, "r")

default_pre = "mpt" if model_name == "gpt-neox" else "default"

field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
assert field # tokenizer model
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))

field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)

field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
assert field # token list
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])

if model_name == "llama-spm":
field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
assert field # token scores
self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])

field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
assert field # token types
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])

if model_name != "llama-spm":
field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
assert field # token merges
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])

if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])


@Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model):
Expand Down Expand Up @@ -2410,39 +2455,7 @@ def set_vocab(self):
self._set_vocab_sentencepiece()
else:
# Use the GPT-NeoX tokenizer when no tokenizer files are present
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
neox_reader = gguf.GGUFReader(tokenizer_path, "r")

field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")

field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")

field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
assert field
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])

field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
assert field
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])

field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
assert field
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])

field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)

field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)

field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)

field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
self._set_vocab_builtin("gpt-neox", vocab_size)

def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model"])
Expand Down Expand Up @@ -2594,6 +2607,82 @@ def set_vocab(self, *args, **kwargs):
self.gguf_writer.add_add_eos_token(True)


@Model.register("OpenELMForCausalLM")
class OpenELMModel(Model):
model_arch = gguf.MODEL_ARCH.OPENELM

@staticmethod
def _make_divisible(v: float | int, divisor: int) -> int:
# ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
self._n_embd: int = self.hparams["model_dim"]
self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
self._num_query_heads: list[int] = self.hparams["num_query_heads"]
self._ffn_dims: list[int] = [
OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
for multiplier in ffn_multipliers
]
assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)

# Uses the tokenizer from meta-llama/Llama-2-7b-hf
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])

def set_gguf_parameters(self):
n_embd = self._n_embd
head_dim = self.hparams["head_dim"]
rot_pct = 1.0
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_query_heads)
assert self.block_count == len(self._ffn_dims)

self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams["max_context_length"])
self.gguf_writer.add_embedding_length(n_embd)
self.gguf_writer.add_feed_forward_length(self._ffn_dims)
self.gguf_writer.add_head_count(self._num_query_heads)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
# https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
self.gguf_writer.add_layer_norm_rms_eps(1e-6)
self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)
self.gguf_writer.add_file_type(self.ftype)

def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
if "n_layers" in keys:
return self.hparams["num_transformer_layers"]

return super().find_hparam(keys, optional)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:

# split ff
if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
ff_dim = self._ffn_dims[bid]
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
return

yield (self.map_tensor_name(name), data_torch)


@Model.register("ArcticForCausalLM")
class ArcticModel(Model):
model_arch = gguf.MODEL_ARCH.ARCTIC
Expand Down
15 changes: 15 additions & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,6 +159,7 @@ class MODEL_ARCH(IntEnum):
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
OPENELM = auto()
ARCTIC = auto()
DEEPSEEK2 = auto()
BITNET = auto()
Expand Down Expand Up @@ -283,6 +284,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.OPENELM: "openelm",
MODEL_ARCH.ARCTIC: "arctic",
MODEL_ARCH.DEEPSEEK2: "deepseek2",
MODEL_ARCH.BITNET: "bitnet",
Expand Down Expand Up @@ -858,6 +860,19 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.OPENELM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.ARCTIC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
Expand Down
21 changes: 15 additions & 6 deletions gguf-py/gguf/gguf_writer.py
Original file line number Diff line number Diff line change
Expand Up @@ -480,8 +480,11 @@ def add_block_count(self, length: int) -> None:
def add_leading_dense_block_count(self, length: int) -> None:
self.add_uint32(Keys.LLM.LEADING_DENSE_BLOCK_COUNT.format(arch=self.arch), length)

def add_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
def add_feed_forward_length(self, length: int | Sequence[int]) -> None:
if isinstance(length, int):
self.add_uint32(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)
else:
self.add_array(Keys.LLM.FEED_FORWARD_LENGTH.format(arch=self.arch), length)

def add_expert_feed_forward_length(self, length: int) -> None:
self.add_uint32(Keys.LLM.EXPERT_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
Expand All @@ -495,11 +498,17 @@ def add_parallel_residual(self, use: bool) -> None:
def add_decoder_start_token_id(self, id: int) -> None:
self.add_uint32(Keys.LLM.DECODER_START_TOKEN_ID.format(arch=self.arch), id)

def add_head_count(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
def add_head_count(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT.format(arch=self.arch), count)

def add_head_count_kv(self, count: int) -> None:
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
def add_head_count_kv(self, count: int | Sequence[int]) -> None:
if isinstance(count, int):
self.add_uint32(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)
else:
self.add_array(Keys.Attention.HEAD_COUNT_KV.format(arch=self.arch), count)

def add_key_length(self, length: int) -> None:
self.add_uint32(Keys.Attention.KEY_LENGTH.format(arch=self.arch), length)
Expand Down
16 changes: 13 additions & 3 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ class TensorNameMap:
"backbone.embedding", # mamba
"backbone.embeddings", # mamba-hf
"transformer.in_out_embed", # Grok
"transformer.token_embeddings", # openelm
"shared", # t5
),

Expand All @@ -37,6 +38,7 @@ class TensorNameMap:
"word_embeddings_layernorm", # bloom
"embeddings.LayerNorm", # bert
"emb_ln", # nomic-bert
"transformer.norm", # openelm
),

# Position embeddings
Expand Down Expand Up @@ -69,6 +71,7 @@ class TensorNameMap:
"model.norm_f", # mamba-qbert
"backbone.norm_f", # mamba
"transformer.rms_norm", # Grok
"transformer.norm", # openelm
),

# Rope frequencies
Expand Down Expand Up @@ -98,6 +101,7 @@ class TensorNameMap:
"backbone.layers.{bid}.norm", # mamba
"transformer.decoder_layer.{bid}.rms_norm", # Grok
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
"transformer.layers.{bid}.attn_norm", # openelm
),

# Attention norm 2
Expand All @@ -119,7 +123,8 @@ class TensorNameMap:
"h.{bid}.attn.c_attn", # gpt2
"transformer.h.{bid}.mixer.Wqkv", # phi2
"encoder.layers.{bid}.attn.Wqkv", # nomic-bert
"model.layers.{bid}.self_attn.qkv_proj" # phi3
"model.layers.{bid}.self_attn.qkv_proj", # phi3
"transformer.layers.{bid}.attn.qkv_proj", # openelm
),

# Attention query
Expand Down Expand Up @@ -177,6 +182,7 @@ class TensorNameMap:
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
"transformer.layers.{bid}.attn.out_proj", # openelm
),

# Attention output norm
Expand Down Expand Up @@ -212,6 +218,7 @@ class TensorNameMap:
"h.{bid}.ln_2", # gpt2
"model.layers.{bid}.ffn_norm", # internlm2
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"transformer.layers.{bid}.ffn_norm", # openelm
),

# Post feed-forward norm
Expand Down Expand Up @@ -326,6 +333,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"transformer.layers.{bid}.ffn.proj_2", # openelm
"model.layers.{bid}.residual_mlp.w2", # arctic
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
),
Expand All @@ -347,15 +355,17 @@ class TensorNameMap:
"model.layers.{bid}.self_attn.q_layernorm", # persimmon
"model.layers.{bid}.self_attn.q_norm", # cohere
"transformer.blocks.{bid}.attn.q_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
"encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
"transformer.layers.{bid}.attn.q_norm", # openelm
),

MODEL_TENSOR.ATTN_K_NORM: (
"language_model.encoder.layers.{bid}.self_attention.k_layernorm",
"model.layers.{bid}.self_attn.k_layernorm", # persimmon
"model.layers.{bid}.self_attn.k_norm", # cohere
"transformer.blocks.{bid}.attn.k_ln", # sea-lion
"encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
"encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
"transformer.layers.{bid}.attn.k_norm", # openelm
),

MODEL_TENSOR.ROPE_FREQS: (
Expand Down
Loading
Loading