Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for sqrt on CUDA #7953

Merged
merged 8 commits into from
Jun 16, 2024
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 8 additions & 8 deletions examples/cvector-generator/pca.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -64,15 +64,15 @@ struct pca_model {
struct ggml_tensor * dev_eigenvector;

pca_model(struct ggml_tensor * t_input) {
// TODO: enable GPU support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_CUDA
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
// backend = ggml_backend_cuda_init(0); // init device 0
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
// }
// #endif
#ifdef GGML_USE_CUDA
fprintf(stderr, "%s: using CUDA backend\n", __func__);
backend = ggml_backend_cuda_init(0); // init device 0
if (!backend) {
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
}
#endif

// TODO: enable Metal support when support for GGML_OP_SQRT is added
// #ifdef GGML_USE_METAL
// fprintf(stderr, "%s: using Metal backend\n", __func__);
// backend = ggml_backend_metal_init();
Expand Down
4 changes: 4 additions & 0 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -2267,6 +2267,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SQR:
ggml_cuda_op_sqr(ctx, dst);
break;
case GGML_OP_SQRT:
ggml_cuda_op_sqrt(ctx, dst);
break;
case GGML_OP_CLAMP:
ggml_cuda_op_clamp(ctx, dst);
break;
Expand Down Expand Up @@ -2830,6 +2833,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_CLAMP:
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
Expand Down
28 changes: 28 additions & 0 deletions ggml-cuda/unary.cu
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,15 @@ static __global__ void sqr_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] * x[i];
}

static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;

if (i >= k) {
return;
}
dst[i] = sqrt(x[i]);
calvin-laurenson marked this conversation as resolved.
Show resolved Hide resolved
}

static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
Expand Down Expand Up @@ -142,6 +151,11 @@ static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}

void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
Expand Down Expand Up @@ -284,3 +298,17 @@ void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}

void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
3 changes: 3 additions & 0 deletions ggml-cuda/unary.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
#define CUDA_HARDSWISH_BLOCK_SIZE 256
#define CUDA_SQR_BLOCK_SIZE 256
#define CUDA_SQRT_BLOCK_SIZE 256

void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

Expand All @@ -28,3 +29,5 @@ void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
28 changes: 28 additions & 0 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1063,6 +1063,33 @@ struct test_sqr : public test_case {
}
};

// GGML_OP_SQRT
struct test_sqrt : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;

std::string vars() override {
return VARS_TO_STR2(type, ne);
}

test_sqrt(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10})
: type(type), ne(ne) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_tensor * out = ggml_sqrt(ctx, a);
return out;
}

void initialize_tensors(ggml_context * ctx) override {
// fill with positive values
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t, 0.0f, 100.0f);
}
}
};

// GGML_OP_CLAMP
struct test_clamp : public test_case {
const ggml_type type;
Expand Down Expand Up @@ -2200,6 +2227,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}

test_cases.emplace_back(new test_sqr());
test_cases.emplace_back(new test_sqrt());
test_cases.emplace_back(new test_clamp());

test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
Expand Down