-
Notifications
You must be signed in to change notification settings - Fork 128
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
release TAPIR clustering from RoboTAP
PiperOrigin-RevId: 561646394 Change-Id: I6fc2b265bb4ec18a9e79c485c31893b3f90ca857
- Loading branch information
1 parent
7b3a336
commit e8236e9
Showing
3 changed files
with
1,251 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "MWPOsk-I8o69" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Download Code {form-width: \"25%\"}\n", | ||
"!git clone https://github.com/deepmind/tapnet.git" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "OUfaseMw_hqJ" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Install Dependencies {form-width: \"25%\"}\n", | ||
"!pip install -r tapnet/requirements_inference.txt" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "dNWBx_DOHSSt" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Download Model {form-width: \"25%\"}\n", | ||
"\n", | ||
"%mkdir tapnet/checkpoints\n", | ||
"\n", | ||
"!wget -P tapnet/checkpoints https://storage.googleapis.com/dm-tapnet/causal_tapir_checkpoint.npy\n", | ||
"\n", | ||
"%ls tapnet/checkpoints\n", | ||
"\n", | ||
"checkpoint_path = 'tapnet/checkpoints/causal_tapir_checkpoint.npy'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "jtTNXUNCHVAL" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Imports {form-width: \"25%\"}\n", | ||
"%matplotlib widget\n", | ||
"import functools\n", | ||
"\n", | ||
"import haiku as hk\n", | ||
"import jax\n", | ||
"import jax.numpy as jnp\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import mediapy as media\n", | ||
"import numpy as np\n", | ||
"from tqdm import tqdm\n", | ||
"import tree\n", | ||
"\n", | ||
"from tapnet import tapir_clustering\n", | ||
"from tapnet.utils import transforms\n", | ||
"from tapnet.utils import viz_utils" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "0J9kVfSuHmqS" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Load an Exemplar Video {form-width: \"25%\"}\n", | ||
"\n", | ||
"%mkdir tapnet/examplar_videos\n", | ||
"\n", | ||
"!wget -P tapnet/examplar_videos https://storage.googleapis.com/dm-tapnet/robotap/for_clustering.mp4\n", | ||
"\n", | ||
"video = media.read_video('tapnet/examplar_videos/for_clustering.mp4')\n", | ||
"height, width = video.shape[1:3]\n", | ||
"media.show_video(video[::5], fps=10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "7Vjhi4PdJ2W-" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Run TAPIR to extract point tracks {form-width: \"25%\"}\n", | ||
"\n", | ||
"demo_videos = {\"dummy_id\":video}\n", | ||
"demo_episode_ids = list(demo_videos.keys())\n", | ||
"track_dict = tapir_clustering.track_many_points(\n", | ||
" demo_videos,\n", | ||
" demo_episode_ids,\n", | ||
" checkpoint_path,\n", | ||
" point_batch_size=1024,\n", | ||
" points_per_frame=10,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "kU2yqJVTPgg-" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Run the clustering {form-width: \"25%\"}\n", | ||
"\n", | ||
"clustered = tapir_clustering.compute_clusters(\n", | ||
" track_dict['separation_tracks'],\n", | ||
" track_dict['separation_visibility'],\n", | ||
" track_dict['demo_episode_ids'],\n", | ||
" track_dict['video_shape'],\n", | ||
" track_dict['query_features'],\n", | ||
" max_num_cats=12,\n", | ||
" final_num_cats=7,\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"id": "FCNCAeLVQ0r2" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# @title Display the inferred clusters {form-width: \"25%\"}\n", | ||
"\n", | ||
"separation_visibility_trim = clustered['separation_visibility']\n", | ||
"separation_tracks_trim = clustered['separation_tracks']\n", | ||
"\n", | ||
"pointtrack_video = viz_utils.plot_tracks_v2(\n", | ||
" (demo_videos[demo_episode_ids[0]]).astype(np.uint8),\n", | ||
" separation_tracks_trim[demo_episode_ids[0]],\n", | ||
" 1.0-separation_visibility_trim[demo_episode_ids[0]],\n", | ||
" trackgroup=clustered['classes']\n", | ||
")\n", | ||
"media.show_video(pointtrack_video, fps=20)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.