Skip to content
This repository has been archived by the owner on Jan 10, 2025. It is now read-only.

Commit

Permalink
add vps metrics
Browse files Browse the repository at this point in the history
  • Loading branch information
chentingpc committed Mar 8, 2023
1 parent b2d9876 commit 23bce6e
Show file tree
Hide file tree
Showing 3 changed files with 738 additions and 1 deletion.
11 changes: 10 additions & 1 deletion data/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import tensorflow as tf
import tensorflow_datasets as tfds


DatasetRegistry = registry.Registry()


Expand Down Expand Up @@ -199,6 +200,11 @@ def num_eval_examples(self):
class TFRecordDataset(Dataset):
"""A dataset created from tfrecord files."""

def __init__(self, config: ml_collections.ConfigDict):
"""Constructs the dataset."""
super().__init__(config)
self.dataset_cls = tf.data.TFRecordDataset

def load_dataset(self, input_context, training):
"""Load tf.data.Dataset from TFRecord files."""
if training or self.config.eval_split == 'train':
Expand All @@ -207,7 +213,8 @@ def load_dataset(self, input_context, training):
file_pattern = self.config.val_file_pattern
dataset = tf.data.Dataset.list_files(file_pattern, shuffle=training)
dataset = dataset.interleave(
tf.data.TFRecordDataset, cycle_length=32, deterministic=not training)
self.dataset_cls, cycle_length=32, deterministic=not training,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
return dataset

@abc.abstractmethod
Expand Down Expand Up @@ -254,3 +261,5 @@ def num_train_examples(self):
def num_eval_examples(self):
return self.config.eval_num_examples if not self.task_config.get(
'unbatch', False) else None


359 changes: 359 additions & 0 deletions metrics/segmentation_and_tracking_quality.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
# coding=utf-8
# Copyright 2022 The Pix2Seq Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Implementation of the Segmentation and Tracking Quality (STQ) metric.
This is a copy of
https://github.com/google-research/deeplab2/blob/main/evaluation/depth_aware_segmentation_and_tracking_quality.py
"""

import collections
from typing import Any, Dict, MutableMapping, Optional, Sequence, Text, Union

import warnings

import numpy as np
import tensorflow as tf


def _check_weights(unique_weight_list: Sequence[float]):
if not set(unique_weight_list).issubset({0.5, 1.0}):
warnings.warn(
'Potential performance degration as the code is not optimized'
' when weights has too many different elements.'
)


def _update_dict_stats(
stat_dict: MutableMapping[int, tf.Tensor],
id_array: tf.Tensor,
weights: Optional[tf.Tensor] = None,
):
"""Updates a given dict with corresponding counts."""
if weights is None:
unique_weight_list = [1.0]
else:
unique_weight_list, _ = tf.unique(weights)
unique_weight_list = unique_weight_list.numpy().tolist()
_check_weights(unique_weight_list)
# Iterate through the unique weight values, and weighted-average the counts.
# Example usage: lower the weights in the region covered by multiple camera in
# panoramic video panoptic segmentation (PVPS).
for weight in unique_weight_list:
if weights is None:
ids, _, counts = tf.unique_with_counts(id_array)
else:
ids, _, counts = tf.unique_with_counts(
tf.boolean_mask(id_array, tf.equal(weight, weights)))
for idx, count in zip(ids.numpy(), tf.cast(counts, tf.float32)):
if idx in stat_dict:
stat_dict[idx] += count * weight
else:
stat_dict[idx] = count * weight


class STQuality(object):
"""Metric class for the Segmentation and Tracking Quality (STQ).
The metric computes the geometric mean of two terms.
- Association Quality: This term measures the quality of the track ID
assignment for `thing` classes. It is formulated as a weighted IoU
measure.
- Segmentation Quality: This term measures the semantic segmentation quality.
The standard class IoU measure is used for this.
Example usage:
stq_obj = segmentation_tracking_quality.STQuality(num_classes, things_list,
ignore_label, max_instances_per_category, offset)
stq_obj.update_state(y_true_1, y_pred_1)
stq_obj.update_state(y_true_2, y_pred_2)
...
result = stq_obj.result().numpy()
"""

def __init__(self,
num_classes: int,
things_list: Sequence[int],
ignore_label: int,
max_instances_per_category: int,
offset: int,
name='stq'
):
"""Initialization of the STQ metric.
Args:
num_classes: Number of classes in the dataset as an integer.
things_list: A sequence of class ids that belong to `things`.
ignore_label: The class id to be ignored in evaluation as an integer or
integer tensor.
max_instances_per_category: The maximum number of instances for each class
as an integer or integer tensor.
offset: The maximum number of unique labels as an integer or integer
tensor.
name: An optional name. (default: 'st_quality')
"""
self._name = name
self._num_classes = num_classes
self._ignore_label = ignore_label
self._things_list = things_list
self._max_instances_per_category = max_instances_per_category

if ignore_label >= num_classes:
self._confusion_matrix_size = num_classes + 1
self._include_indices = np.arange(self._num_classes)
else:
self._confusion_matrix_size = num_classes
self._include_indices = np.array(
[i for i in range(num_classes) if i != self._ignore_label])

self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
self._predictions = collections.OrderedDict()
self._ground_truth = collections.OrderedDict()
self._intersections = collections.OrderedDict()
self._sequence_length = collections.OrderedDict()
self._offset = offset
lower_bound = num_classes * max_instances_per_category
if offset < lower_bound:
raise ValueError('The provided offset %d is too small. No guarantess '
'about the correctness of the results can be made. '
'Please choose an offset that is higher than num_classes'
' * max_instances_per_category = %d' % lower_bound)

def update_state(self,
y_true: tf.Tensor,
y_pred: tf.Tensor,
sequence_id: Union[int, str] = 0,
weights: Optional[tf.Tensor] = None):
"""Accumulates the segmentation and tracking quality statistics.
Args:
y_true: The ground-truth panoptic label map for a particular video frame
(defined as semantic_map * max_instances_per_category + instance_map).
y_pred: The predicted panoptic label map for a particular video frame
(defined as semantic_map * max_instances_per_category + instance_map).
sequence_id: The optional ID of the sequence the frames belong to. When no
sequence is given, all frames are considered to belong to the same
sequence (default: 0).
weights: The weights for each pixel with the same shape of `y_true`.
"""
y_true = tf.cast(y_true, dtype=tf.int64)
y_pred = tf.cast(y_pred, dtype=tf.int64)
if weights is not None:
weights = tf.reshape(weights, y_true.shape)
semantic_label = y_true // self._max_instances_per_category
semantic_prediction = y_pred // self._max_instances_per_category
# Check if the ignore value is outside the range [0, num_classes]. If yes,
# map `_ignore_label` to `_num_classes`, so it can be used to create the
# confusion matrix.
if self._ignore_label > self._num_classes:
semantic_label = tf.where(
tf.not_equal(semantic_label, self._ignore_label), semantic_label,
self._num_classes)
semantic_prediction = tf.where(
tf.not_equal(semantic_prediction, self._ignore_label),
semantic_prediction, self._num_classes)
if sequence_id in self._iou_confusion_matrix_per_sequence:
self._iou_confusion_matrix_per_sequence[sequence_id] += (
tf.math.confusion_matrix(
tf.reshape(semantic_label, [-1]),
tf.reshape(semantic_prediction, [-1]),
self._confusion_matrix_size,
dtype=tf.float64,
weights=tf.reshape(weights, [-1])
if weights is not None else None))
self._sequence_length[sequence_id] += 1
else:
self._iou_confusion_matrix_per_sequence[sequence_id] = (
tf.math.confusion_matrix(
tf.reshape(semantic_label, [-1]),
tf.reshape(semantic_prediction, [-1]),
self._confusion_matrix_size,
dtype=tf.float64,
weights=tf.reshape(weights, [-1])
if weights is not None else None))
self._predictions[sequence_id] = {}
self._ground_truth[sequence_id] = {}
self._intersections[sequence_id] = {}
self._sequence_length[sequence_id] = 1

instance_label = y_true % self._max_instances_per_category

label_mask = tf.zeros_like(semantic_label, dtype=tf.bool)
prediction_mask = tf.zeros_like(semantic_prediction, dtype=tf.bool)
for things_class_id in self._things_list:
label_mask = tf.logical_or(label_mask,
tf.equal(semantic_label, things_class_id))
prediction_mask = tf.logical_or(
prediction_mask, tf.equal(semantic_prediction, things_class_id))

# Select the `crowd` region of the current class. This region is encoded
# instance id `0`.
is_crowd = tf.logical_and(tf.equal(instance_label, 0), label_mask)
# Select the non-crowd region of the corresponding class as the `crowd`
# region is ignored for the tracking term.
label_mask = tf.logical_and(label_mask, tf.logical_not(is_crowd))
# Do not punish id assignment for regions that are annotated as `crowd` in
# the ground-truth.
prediction_mask = tf.logical_and(prediction_mask, tf.logical_not(is_crowd))

seq_preds = self._predictions[sequence_id]
seq_gts = self._ground_truth[sequence_id]
seq_intersects = self._intersections[sequence_id]

# Compute and update areas of ground-truth, predictions and intersections.
_update_dict_stats(
seq_preds, y_pred[prediction_mask],
weights[prediction_mask] if weights is not None else None)
_update_dict_stats(seq_gts, y_true[label_mask],
weights[label_mask] if weights is not None else None)

non_crowd_intersection = tf.logical_and(label_mask, prediction_mask)
intersection_ids = (
y_true[non_crowd_intersection] * self._offset +
y_pred[non_crowd_intersection])
_update_dict_stats(
seq_intersects, intersection_ids,
weights[non_crowd_intersection] if weights is not None else None)

def merge_state(self, metrics: Sequence['STQuality']):
"""Merges the results of multiple STQuality metrics.
This can be used to distribute metric computation for multiple sequences on
multiple instances, by computing metrics on each sequence separately, and
then merging the metrics with this function.
Note that only metrics with unique sequences are supported. Passing in
metrics with common instances is not supported.
Args:
metrics: A sequence of STQuality objects with unique sequences.
Raises:
ValueError: If a sequence is re-used between different metrics, or is
already in this metric.
"""
# pylint: disable=protected-access
for metric in metrics:
for sequence in metric._ground_truth.keys():
if sequence in self._ground_truth:
raise ValueError('Tried to merge metrics with duplicate sequences.')
self._ground_truth[sequence] = metric._ground_truth[sequence]
self._predictions[sequence] = metric._predictions[sequence]
self._intersections[sequence] = metric._intersections[sequence]
self._iou_confusion_matrix_per_sequence[sequence] = (
metric._iou_confusion_matrix_per_sequence[sequence])
self._sequence_length[sequence] = metric._sequence_length[sequence]
# pylint: enable=protected-access

def result(self) -> Dict[Text, Any]:
"""Computes the segmentation and tracking quality.
Returns:
A dictionary containing:
- 'STQ': The total STQ score.
- 'AQ': The total association quality (AQ) score.
- 'IoU': The total mean IoU.
- 'STQ_per_seq': A list of the STQ score per sequence.
- 'AQ_per_seq': A list of the AQ score per sequence.
- 'IoU_per_seq': A list of mean IoU per sequence.
- 'Id_per_seq': A list of sequence Ids to map list index to sequence.
- 'Length_per_seq': A list of the length of each sequence.
"""
# Compute association quality (AQ)
num_tubes_per_seq = [0] * len(self._ground_truth)
aq_per_seq = [0] * len(self._ground_truth)
iou_per_seq = [0] * len(self._ground_truth)
id_per_seq = [''] * len(self._ground_truth)

for index, sequence_id in enumerate(self._ground_truth):
outer_sum = 0.0
predictions = self._predictions[sequence_id]
ground_truth = self._ground_truth[sequence_id]
intersections = self._intersections[sequence_id]
num_tubes_per_seq[index] = len(ground_truth)
id_per_seq[index] = sequence_id

for gt_id, gt_size in ground_truth.items():
inner_sum = 0.0
for pr_id, pr_size in predictions.items():
tpa_key = self._offset * gt_id + pr_id
if tpa_key in intersections:
tpa = intersections[tpa_key].numpy()
fpa = pr_size.numpy() - tpa
fna = gt_size.numpy() - tpa
inner_sum += tpa * (tpa / (tpa + fpa + fna))

outer_sum += 1.0 / gt_size.numpy() * inner_sum
aq_per_seq[index] = outer_sum

aq_mean = np.sum(aq_per_seq) / np.maximum(np.sum(num_tubes_per_seq), 1e-15)
aq_per_seq = aq_per_seq / np.maximum(num_tubes_per_seq, 1e-15)

# Compute IoU scores.
# The rows correspond to ground-truth and the columns to predictions.
# Remove fp from confusion matrix for the void/ignore class.
total_confusion = np.zeros(
(self._confusion_matrix_size, self._confusion_matrix_size),
dtype=np.float64)
for index, confusion in enumerate(
self._iou_confusion_matrix_per_sequence.values()):
confusion = confusion.numpy()
removal_matrix = np.zeros_like(confusion)
removal_matrix[self._include_indices, :] = 1.0
confusion *= removal_matrix
total_confusion += confusion

# `intersections` corresponds to true positives.
intersections = confusion.diagonal()
fps = confusion.sum(axis=0) - intersections
fns = confusion.sum(axis=1) - intersections
unions = intersections + fps + fns

num_classes = np.count_nonzero(unions)
ious = (intersections.astype(np.double) /
np.maximum(unions, 1e-15).astype(np.double))
iou_per_seq[index] = np.sum(ious) / num_classes

# `intersections` corresponds to true positives.
intersections = total_confusion.diagonal()
fps = total_confusion.sum(axis=0) - intersections
fns = total_confusion.sum(axis=1) - intersections
unions = intersections + fps + fns

num_classes = np.count_nonzero(unions)
ious = (intersections.astype(np.double) /
np.maximum(unions, 1e-15).astype(np.double))
iou_mean = np.sum(ious) / num_classes

st_quality = np.sqrt(aq_mean * iou_mean)
st_quality_per_seq = np.sqrt(aq_per_seq * iou_per_seq)
return {'STQ': st_quality,
'AQ': aq_mean,
'IoU': float(iou_mean),
'STQ_per_seq': st_quality_per_seq,
'AQ_per_seq': aq_per_seq,
'IoU_per_seq': iou_per_seq,
'ID_per_seq': id_per_seq,
'Length_per_seq': list(self._sequence_length.values()),
}

def reset_states(self):
"""Resets all states that accumulated data."""
self._iou_confusion_matrix_per_sequence = collections.OrderedDict()
self._predictions = collections.OrderedDict()
self._ground_truth = collections.OrderedDict()
self._intersections = collections.OrderedDict()
self._sequence_length = collections.OrderedDict()
Loading

0 comments on commit 23bce6e

Please sign in to comment.