-
Notifications
You must be signed in to change notification settings - Fork 97
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added PCurlGradJacobiPolynomialBases
- Loading branch information
1 parent
b9b8fc4
commit 107adf1
Showing
3 changed files
with
285 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,281 @@ | ||
""" | ||
struct PCurlGradJacobiPolynomialBasis{...} <: AbstractArray{JacobiPolynomial} | ||
This type implements a multivariate vector-valued polynomial basis | ||
spanning the space needed for Raviart-Thomas reference elements on simplices. | ||
The type parameters and fields of this `struct` are not public. | ||
This type fully implements the [`Field`](@ref) interface, with up to first order | ||
derivatives. | ||
""" | ||
struct PCurlGradJacobiPolynomialBasis{D,T} <: AbstractVector{JacobiPolynomial} | ||
order::Int | ||
pterms::Array{CartesianIndex{D},1} | ||
sterms::Array{CartesianIndex{D},1} | ||
perms::Matrix{Int} | ||
function PCurlGradJacobiPolynomialBasis(::Type{T},order::Int, | ||
pterms::Array{CartesianIndex{D},1},sterms::Array{CartesianIndex{D},1}, | ||
perms::Matrix{Int}) where {D,T} | ||
new{D,T}(order,pterms,sterms,perms) | ||
end | ||
end | ||
|
||
Base.size(a::PCurlGradJacobiPolynomialBasis) = (_ndofs_pgrad(a),) | ||
# @santiagobadia : Not sure we want to create the monomial machinery | ||
Base.getindex(a::PCurlGradJacobiPolynomialBasis,i::Integer) = JacobiPolynomial() | ||
Base.IndexStyle(::PCurlGradJacobiPolynomialBasis) = IndexLinear() | ||
|
||
""" | ||
PCurlGradJacobiPolynomialBasis{D}(::Type{T},order::Int) where {D,T} | ||
Returns a `PCurlGradJacobiPolynomialBasis` object. `D` is the dimension | ||
of the coordinate space and `T` is the type of the components in the vector-value. | ||
The `order` argument has the following meaning: the divergence of the functions | ||
in this basis is in the P space of degree `order`. | ||
""" | ||
function PCurlGradJacobiPolynomialBasis{D}(::Type{T},order::Int) where {D,T} | ||
@check T<:Real "T needs to be <:Real since represents the type of the components of the vector value" | ||
P_k = MonomialBasis{D}(T, order, _p_filter) | ||
S_k = MonomialBasis{D}(T, order, _s_filter) | ||
pterms = P_k.terms | ||
sterms = S_k.terms | ||
perms = _prepare_perms(D) | ||
PCurlGradJacobiPolynomialBasis(T,order,pterms,sterms,perms) | ||
end | ||
|
||
""" | ||
num_terms(f::PCurlGradJacobiPolynomialBasis{D,T}) where {D,T} | ||
""" | ||
function num_terms(f::PCurlGradJacobiPolynomialBasis{D,T}) where {D,T} | ||
Int(_p_dim(f.order,D)*D + _p_dim(f.order,D-1)) | ||
end | ||
|
||
get_order(f::PCurlGradJacobiPolynomialBasis{D,T}) where {D,T} = f.order | ||
|
||
return_type(::PCurlGradJacobiPolynomialBasis{D,T}) where {D,T} = T | ||
|
||
function return_cache(f::PCurlGradJacobiPolynomialBasis{D,T},x::AbstractVector{<:Point}) where {D,T} | ||
@check D == length(eltype(x)) "Incorrect number of point components" | ||
np = length(x) | ||
ndof = _ndofs_pgrad(f) | ||
n = 1 + f.order+1 | ||
V = VectorValue{D,T} | ||
r = CachedArray(zeros(V,(np,ndof))) | ||
v = CachedArray(zeros(V,(ndof,))) | ||
c = CachedArray(zeros(T,(D,n))) | ||
(r, v, c) | ||
end | ||
|
||
function evaluate!(cache,f::PCurlGradJacobiPolynomialBasis{D,T},x::AbstractVector{<:Point}) where {D,T} | ||
r, v, c = cache | ||
np = length(x) | ||
ndof = _ndofs_pgrad(f) | ||
n = 1 + f.order+1 | ||
setsize!(r,(np,ndof)) | ||
setsize!(v,(ndof,)) | ||
setsize!(c,(D,n)) | ||
for i in 1:np | ||
@inbounds xi = x[i] | ||
_evaluate_nd_pcurlgrad_jp!(v,xi,f.order+1,f.pterms,f.sterms,f.perms,c) | ||
for j in 1:ndof | ||
@inbounds r[i,j] = v[j] | ||
end | ||
end | ||
r.array | ||
end | ||
|
||
function return_cache( | ||
fg::FieldGradientArray{1,PCurlGradJacobiPolynomialBasis{D,T}}, | ||
x::AbstractVector{<:Point}) where {D,T} | ||
|
||
f = fg.fa | ||
@check D == length(eltype(x)) "Incorrect number of point components" | ||
np = length(x) | ||
ndof = _ndofs_pgrad(f) | ||
n = 1 + f.order+1 | ||
xi = testitem(x) | ||
V = VectorValue{D,T} | ||
G = gradient_type(V,xi) | ||
r = CachedArray(zeros(G,(np,ndof))) | ||
v = CachedArray(zeros(G,(ndof,))) | ||
c = CachedArray(zeros(T,(D,n))) | ||
g = CachedArray(zeros(T,(D,n))) | ||
(r, v, c, g) | ||
end | ||
|
||
function evaluate!(cache, | ||
fg::FieldGradientArray{1,PCurlGradJacobiPolynomialBasis{D,T}}, | ||
x::AbstractVector{<:Point}) where {D,T} | ||
|
||
f = fg.fa | ||
r, v, c, g = cache | ||
np = length(x) | ||
ndof = _ndofs_pgrad(f) | ||
n = 1 + f.order+1 | ||
setsize!(r,(np,ndof)) | ||
setsize!(v,(ndof,)) | ||
setsize!(c,(D,n)) | ||
setsize!(g,(D,n)) | ||
V = VectorValue{D,T} | ||
for i in 1:np | ||
@inbounds xi = x[i] | ||
_gradient_nd_pcurlgrad_jp!(v,xi,f.order+1,f.pterms,f.sterms,f.perms,c,g,V) | ||
for j in 1:ndof | ||
@inbounds r[i,j] = v[j] | ||
end | ||
end | ||
r.array | ||
end | ||
|
||
|
||
# Helpers | ||
|
||
_ndofs_pgrad(f::PCurlGradJacobiPolynomialBasis{D}) where D = num_terms(f) | ||
|
||
function _evaluate_nd_pcurlgrad_jp!( | ||
v::AbstractVector{V}, | ||
x, | ||
order, | ||
pterms::Array{CartesianIndex{D},1}, | ||
sterms::Array{CartesianIndex{D},1}, | ||
perms::Matrix{Int}, | ||
c::AbstractMatrix{T}) where {V,T,D} | ||
|
||
dim = D | ||
for d in 1:dim | ||
_evaluate_1d_jp!(c,x,order,d) | ||
end | ||
|
||
o = one(T) | ||
k = 1 | ||
m = zero(Mutable(V)) | ||
js = eachindex(m) | ||
z = zero(T) | ||
|
||
for ci in pterms | ||
for j in js | ||
|
||
@inbounds for i in js | ||
m[i] = z | ||
end | ||
|
||
s = o | ||
@inbounds for d in 1:dim | ||
s *= c[d,ci[perms[d,j]]] | ||
end | ||
|
||
m[j] = s | ||
v[k] = m | ||
k += 1 | ||
end | ||
end | ||
|
||
for ci in sterms | ||
@inbounds for i in js | ||
m[i] = z | ||
end | ||
for j in js | ||
|
||
s = c[j,2] | ||
@inbounds for d in 1:dim | ||
s *= c[d,ci[d]] | ||
end | ||
|
||
m[j] = s | ||
|
||
end | ||
v[k] = m | ||
k += 1 | ||
end | ||
end | ||
|
||
function _gradient_nd_pcurlgrad_jp!( | ||
v::AbstractVector{G}, | ||
x, | ||
order, | ||
pterms::Array{CartesianIndex{D},1}, | ||
sterms::Array{CartesianIndex{D},1}, | ||
perms::Matrix{Int}, | ||
c::AbstractMatrix{T}, | ||
g::AbstractMatrix{T}, | ||
::Type{V}) where {G,T,D,V} | ||
|
||
dim = D | ||
for d in 1:dim | ||
_evaluate_1d_jp!(c,x,order,d) | ||
_gradient_1d_jp!(g,x,order,d) | ||
end | ||
|
||
z = zero(Mutable(V)) | ||
m = zero(Mutable(G)) | ||
js = eachindex(z) | ||
mjs = eachindex(m) | ||
o = one(T) | ||
zi = zero(T) | ||
k = 1 | ||
|
||
for ci in pterms | ||
for j in js | ||
|
||
s = z | ||
for i in js | ||
s[i] = o | ||
end | ||
|
||
for q in 1:dim | ||
for d in 1:dim | ||
if d != q | ||
@inbounds s[q] *= c[d,ci[perms[d,j]]] | ||
else | ||
@inbounds s[q] *= g[d,ci[perms[d,j]]] | ||
end | ||
end | ||
end | ||
|
||
@inbounds for i in mjs | ||
m[i] = zi | ||
end | ||
|
||
for i in js | ||
@inbounds m[i,j] = s[i] | ||
end | ||
@inbounds v[k] = m | ||
k += 1 | ||
end | ||
end | ||
|
||
for ci in sterms | ||
|
||
@inbounds for i in mjs | ||
m[i] = zi | ||
end | ||
|
||
for j in js | ||
|
||
s = z | ||
for i in js | ||
s[i] = c[j,2] | ||
end | ||
|
||
for q in 1:dim | ||
for d in 1:dim | ||
if d != q | ||
@inbounds s[q] *= c[d,ci[d]] | ||
else | ||
@inbounds s[q] *= g[d,ci[d]] | ||
end | ||
end | ||
end | ||
aux = o | ||
@inbounds for d in 1:dim | ||
aux *= c[d,ci[d]] | ||
end | ||
s[j] += aux | ||
|
||
for i in js | ||
@inbounds m[i,j] = s[i] | ||
end | ||
end | ||
@inbounds v[k] = m | ||
k += 1 | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters