The chartcatalog
package contains tools to
- Lookup available charts in JAMES;
- Create and parse chart codes;
- Find outcomes, chart group and growth reference;
- Obtain viewport number and transformation functions;
- Lookup break points from the brokenstick model.
You can install the development version chartcatalog
by
install.packages("remotes")
remotes::install_github("growthcharts/chartcatalog")
There is no release on CRAN.
The current catalogs holds 440 Dutch charts.
library(chartcatalog)
head(ynames_lookup)
#> chartgrp chartcode yname vpn vp reference
#> 1 nl2010 DJAA hdc 3 A clopus::nl2009[["nl2009.mhdcDS"]]
#> 2 nl2010 DJAA hgt 4 B clopus::nl2009[["nl2009.mhgtDS"]]
#> 3 nl2010 DJAA wgt 5 C clopus::nl1980[["nl1980.mwgt"]]
#> 4 nl2010 DJAH hgt 1 A clopus::nl2009[["nl2009.mhgtDS"]]
#> 5 nl2010 DJAO hdc 1 A clopus::nl2009[["nl2009.mhdcDS"]]
#> 6 nl2010 DJAW wgt 1 A clopus::nl1980[["nl1980.mwgt"]]
#> tx inv_tx ty inv_ty seq
#> 1 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> 2 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> 3 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> 4 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> 5 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> 6 function(x) x * 12 function(x) x / 12 function(y) y function(y) y tr
#> refcode
#> 1 nl_2009_hdc_male_ds
#> 2 nl_2009_hgt_male_ds
#> 3 nl_1980_wgt_male_
#> 4 nl_2009_hgt_male_ds
#> 5 nl_2009_hdc_male_ds
#> 6 nl_1980_wgt_male_
length(unique(ynames_lookup$chartcode))
#> [1] 440
The charts are subdivided into three groups:
unique(ynames_lookup$chartgrp)
#> [1] "nl2010" "preterm" "who"
There are five outcomes, but not every outcome (yname
) appears in all
chart groups:
with(ynames_lookup, table(chartgrp, yname))
#> yname
#> chartgrp bmi dsc hdc hgt wfh wgt
#> nl2010 20 4 56 64 40 24
#> preterm 0 48 48 96 0 96
#> who 0 52 4 8 4 4
A chartcode
identifies the type of growth chart. The code is a
combination of 4–7 alphanumeric characters. The create_chartcode()
and
parse_chartcode()
functions can be used to obtain information from the
codes. For example,
parse_chartcode(c("HJAA"))
#> $population
#> [1] "HS"
#>
#> $sex
#> [1] "male"
#>
#> $design
#> [1] "A"
#>
#> $side
#> [1] "front"
#>
#> $language
#> [1] "dutch"
#>
#> $week
#> [1] ""
shows that chart with code "HJAA"
identifies the front of the chart
for Hindustan boys living in the Netherlands, design A (A4 size, 0-15
months).
If we have a chart code, we may find its chart group and outcomes as
get_chartgrp("PJEAN26")
#> PJEAN26
#> "preterm"
get_ynames("PJEAN26")
#> PJEAN26 PJEAN26
#> "hgt" "wgt"
We obtain the call to the clopus
package to the post-natal growth
reference of weight of preterms born at a gestational age of 26 week by
call <- get_reference_call("PJEAN26", yname = "wgt")
call
#> [1] "clopus::preterm[[\"pt2012a.mwgt26\"]]"
This call can be stored as a shortcut to the reference. Use
eval(parse(text = call))
to execute the call. Alternatively, if you
have clopus
installed, we may obtain the reference directly by
tb <- get_reference("PJEAN26", yname = "wgt")
slotNames(tb)
#> [1] "table" "info"
head(data.frame(tb@table@table))
#> x L M S
#> 1 0.0000 1.09 0.985 0.206
#> 2 0.0027 1.08 0.971 0.206
#> 3 0.0055 1.08 0.960 0.207
#> 4 0.0082 1.07 0.950 0.207
#> 5 0.0110 1.07 0.943 0.208
#> 6 0.0137 1.06 0.937 0.208
More details can be found in the info
slot:
tb@info
#> An object of class "referenceInfo"
#> Slot "n":
#> [1] 4
#>
#> Slot "i":
#> [1] 2
#>
#> Slot "j":
#> [1] 2
#>
#> Slot "code":
#> [1] "mpt2012a"
#>
#> Slot "country":
#> [1] "NL"
#>
#> Slot "year":
#> [1] 2012
#>
#> Slot "sex":
#> [1] "male"
#>
#> Slot "sub":
#> character(0)
#>
#> Slot "yname":
#> [1] "wgt"
#>
#> Slot "dist":
#> [1] "LMS"
#>
#> Slot "mnx":
#> [1] 0
#>
#> Slot "mxx":
#> [1] 4
#>
#> Slot "source":
#> [1] "Bocca-Tjeertes 2012"
#>
#> Slot "public":
#> character(0)
#>
#> Slot "remark":
#> [1] "Bemerkung =\t\t\t\t\t\t\t\t\t\t\t\t\t"
#>
#> Slot "date":
#> [1] "2021-01-27 16:33:21 CET"
library(centile)
library(nlreferences)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
refcode <- get_refcode("PJEAN26", "wgt")
ref <- load_reference(refcode, pkg = "nlreferences", verbose = TRUE)
head(ref)
#> # A tibble: 6 × 4
#> x L M S
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0 1.09 0.985 0.206
#> 2 0.0027 1.08 0.971 0.206
#> 3 0.0055 1.08 0.96 0.207
#> 4 0.0082 1.07 0.95 0.207
#> 5 0.011 1.07 0.943 0.208
#> 6 0.0137 1.06 0.937 0.208