-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Parallelizing sem_agg and sem_top_k (#66)
Addressing #61
- Loading branch information
Showing
6 changed files
with
374 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
import time | ||
|
||
import pandas as pd | ||
|
||
import lotus | ||
from lotus.models import LM | ||
|
||
lm = LM(model="gpt-4o-mini") | ||
|
||
lotus.settings.configure(lm=lm) | ||
|
||
data = { | ||
"Course Name": [ | ||
"Probability and Random Processes", | ||
"Optimization Methods in Engineering", | ||
"Digital Design and Integrated Circuits", | ||
"Computer Security", | ||
"Cooking", | ||
"Food Sciences", | ||
"Machine Learning", | ||
"Data Structures and Algorithms", | ||
"Quantum Mechanics", | ||
"Organic Chemistry", | ||
"Artificial Intelligence", | ||
"Robotics", | ||
"Thermodynamics", | ||
"Fluid Mechanics", | ||
"Molecular Biology", | ||
"Genetics", | ||
"Astrophysics", | ||
"Neuroscience", | ||
"Microeconomics", | ||
"Macroeconomics", | ||
"Linear Algebra", | ||
"Calculus", | ||
"Statistics", | ||
"Differential Equations", | ||
"Discrete Mathematics", | ||
"Number Theory", | ||
"Graph Theory", | ||
"Topology", | ||
"Complex Analysis", | ||
"Real Analysis", | ||
"Abstract Algebra", | ||
"Numerical Methods", | ||
"Cryptography", | ||
"Network Security", | ||
"Operating Systems", | ||
"Databases", | ||
"Computer Networks", | ||
"Software Engineering", | ||
"Compilers", | ||
"Computer Architecture", | ||
"Parallel Computing", | ||
"Distributed Systems", | ||
"Cloud Computing", | ||
"Big Data Analytics", | ||
"Natural Language Processing", | ||
"Computer Vision", | ||
"Reinforcement Learning", | ||
"Deep Learning", | ||
"Bioinformatics", | ||
"Computational Biology", | ||
"Systems Biology", | ||
"Biochemistry", | ||
"Physical Chemistry", | ||
"Inorganic Chemistry", | ||
"Analytical Chemistry", | ||
"Environmental Chemistry", | ||
"Materials Science", | ||
"Nanotechnology", | ||
"Optics", | ||
"Electromagnetism", | ||
"Nuclear Physics", | ||
"Particle Physics", | ||
"Cosmology", | ||
"Planetary Science", | ||
"Geophysics", | ||
"Atmospheric Science", | ||
"Oceanography", | ||
"Ecology", | ||
"Evolutionary Biology", | ||
"Botany", | ||
"Zoology", | ||
"Microbiology", | ||
"Immunology", | ||
"Virology", | ||
"Pharmacology", | ||
"Physiology", | ||
"Anatomy", | ||
"Neurobiology", | ||
"Cognitive Science", | ||
"Psychology", | ||
"Sociology", | ||
"Anthropology", | ||
"Archaeology", | ||
"Linguistics", | ||
"Philosophy", | ||
"Ethics", | ||
"Logic", | ||
"Political Science", | ||
"International Relations", | ||
"Public Policy", | ||
"Economics", | ||
"Finance", | ||
"Accounting", | ||
"Marketing", | ||
"Management", | ||
"Entrepreneurship", | ||
"Law", | ||
"Criminal Justice", | ||
"Human Rights", | ||
"Environmental Studies", | ||
"Sustainability", | ||
"Urban Planning", | ||
"Architecture", | ||
"Civil Engineering", | ||
"Mechanical Engineering", | ||
"Electrical Engineering", | ||
"Chemical Engineering", | ||
"Aerospace Engineering", | ||
"Biomedical Engineering", | ||
"Environmental Engineering", | ||
], | ||
"Grade Level": [ | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"High School", | ||
"Undergraduate", | ||
"High School", | ||
"Undergraduate", | ||
"High School", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"High School", | ||
"High School", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Undergraduate", | ||
"High School", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Graduate", | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"High School", | ||
"High School", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"High School", | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"High School", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"High School", | ||
"High School", | ||
"Graduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Undergraduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
"Graduate", | ||
], | ||
} | ||
|
||
df = pd.DataFrame(data) | ||
start_time = time.time() | ||
df = df.sem_agg("Summarize all {Course Name}", group_by=["Grade Level"]) | ||
end_time = time.time() | ||
print(df._output[0]) | ||
print(f"Total execution time: {end_time - start_time:.2f} seconds") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
import time | ||
|
||
import pandas as pd | ||
|
||
import lotus | ||
from lotus.models import LM | ||
|
||
lm = LM(model="gpt-4o-mini") | ||
|
||
lotus.settings.configure(lm=lm) | ||
|
||
data = { | ||
"Department": ["Math", "Physics", "Computer Science", "Biology"] * 7, | ||
"Course Name": [ | ||
"Calculus", | ||
"Quantum Mechanics", | ||
"Data Structures", | ||
"Genetics", | ||
"Linear Algebra", | ||
"Thermodynamics", | ||
"Algorithms", | ||
"Ecology", | ||
"Statistics", | ||
"Optics", | ||
"Machine Learning", | ||
"Molecular Biology", | ||
"Number Theory", | ||
"Relativity", | ||
"Computer Networks", | ||
"Evolutionary Biology", | ||
"Differential Equations", | ||
"Particle Physics", | ||
"Operating Systems", | ||
"Biochemistry", | ||
"Complex Analysis", | ||
"Fluid Dynamics", | ||
"Artificial Intelligence", | ||
"Microbiology", | ||
"Topology", | ||
"Astrophysics", | ||
"Cybersecurity", | ||
"Immunology", | ||
], | ||
} | ||
|
||
df = pd.DataFrame(data) | ||
|
||
for method in ["quick", "heap", "naive"]: | ||
start_time = time.time() | ||
sorted_df, stats = df.sem_topk( | ||
"Which {Course Name} is the most challenging?", | ||
K=2, | ||
method=method, | ||
return_stats=True, | ||
group_by=["Department"], | ||
) | ||
end_time = time.time() | ||
print(sorted_df) | ||
print(stats) | ||
print(f"Total execution time: {end_time - start_time:.2f} seconds") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.