This project is for personal study and under development, please click 'watch' or 'star' my repo and check back later if you are interested in it.
Time: 2022.1.1 - 2022.4.30
主要任务:在交通场景下,实现对道路目标(车辆和行人)的实时检测。
完成进度:
-
数据集 ./data
-
kitti.py
-
bdd100k.py
-
数据变换 transform.py
-
数据打包 collate.py
-
-
模型 ./models
-
./backbones
-
./necks
-
./layers
-
head.py
-
fcos.py
-
训练目标 target.py
-
损失函数 loss.py
-
检测后处理 detect.py
-
-
工具 ./tools
-
评估 eval.py
-
训练 train.py
-
测试 test.py
-
推理 inference.py
-
本项目基于Anchor-Free的FCOS算法构建模型。
论文:https://arxiv.org/pdf/2006.09214.pdf
代码:https://github.com/tianzhi0549/FCOS
本项目基于公开的KITTI和BDD100K数据集训练模型。
官网:http://www.cvlibs.net/datasets/kitti/index.php
论文:http://www.cvlibs.net/publications/Geiger2013IJRR.pdf
目录结构:
- kitti
- training
- image_2
- 000000.png
- label_2
- 000000.txt
- testing
- image_2
统计信息:
-
类别数:8
-
类别名称:Car, Van, Truck, Pedestrian, Person_sitting, Cyclist, Tram, Misc
-
场景:City, Residential, Road, Campus, Person
-
训练集图片数:7481
-
测试集图片数:7518
-
图片分辨率:1224x370、1238x374、1242x375、1241x376
-
图片宽高比:3.3:1
官网:https://bdd-data.berkeley.edu/
论文:https://arxiv.org/pdf/1805.04687.pdf
目录结构:
- bdd100k
- images
- 100k
- train
- 0000f77c-6257be58.jpg
- val
- test
- labels
- 100k
- train
- 0000f77c-6257be58.json
- val
统计信息:
-
类别数:10
-
类别名称:Bus, Light, Sign, Person, Bike, Truck, Motor, Car, Train, Rider
-
时间:Dawn/Dusk, Daytime, Night
-
天气:Clear, Partly Cloudy, Overcast, Rainy, Snowy, Foggy
-
场景:Residential, Highway, City Street, Parking Lot, Gas Stations, Tunnel
-
训练集图片数:70k (137张缺少标注)
-
验证集图片数:10k
-
测试集图片数:20k
-
图片分辨率:1280x720
-
图片宽高比:1.78:1
本项目基于准确性和实时性指标评价算法性能。