Skip to content

gururgg/sfDLN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 

Repository files navigation

sfDLN

This repository includes the implementation of structure-function discrepancy learning which is proposed in "Graph Neural Networks Identify An Increased Discrepancy Between Structural and Functional Brain Connectomes Over the Cognitive Decline Continuum"

Hyperparameter Experiments on ADD-SCI Classification

ChebyNet(snet-lnet) sfDLN is used for experiments given below.

1 ) Impact of the k for the k-NN Classifier

k Accuracy F1 Score
3 0.853 ± 0.011 0.832 ± 0.007
5 0.872 ± 0.009 0.836 ± 0.007
7 0.879 ± 0.007 0.845 ± 0.009
9 0.879 ± 0.010 0.844 ± 0.013

2 ) Impact of the K for the ChebyNet

K Accuracy F1 Score
0 0.512 ± 0.045 0.465 ± 0.086
1 0.879 ± 0.007 0.845 ± 0.009
2 0.834 ± 0.018 0.792 ± 0.020

sfDLN on ADD-MCI and MCI-SCI Classification

ChebyNet(snet-lnet)-sfDLN is used for experiments given below. ChebyNet- sfDLN - I refers to the sfDLN trained using inverted (alternative) hypothesis of decreasing discrepancy.

1 ) ADD-MCI Classification

Model Accuracy F1 Score
ChebyNet-sfDLN-I 0.655 ± 0.023 0.510 ± 0.046
ChebyNet-sfDLN 0.712 ± 0.027 0.636 ± 0.040

2 ) MCI-SCI Classification

Model Accuracy F1 Score
ChebyNet-sfDLN-I 0.520 ± 0.036 0.458 ± 0.040
ChebyNet-sfDLN 0.545 ± 0.029 0.478 ± 0.027

About

Structure-Function Discrepancy Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published