This repository includes the implementation of structure-function discrepancy learning which is proposed in "Graph Neural Networks Identify An Increased Discrepancy Between Structural and Functional Brain Connectomes Over the Cognitive Decline Continuum"
ChebyNet(snet-lnet) sfDLN is used for experiments given below.
1 ) Impact of the k for the k-NN Classifier
k | Accuracy | F1 Score |
---|---|---|
3 | 0.853 ± 0.011 | 0.832 ± 0.007 |
5 | 0.872 ± 0.009 | 0.836 ± 0.007 |
7 | 0.879 ± 0.007 | 0.845 ± 0.009 |
9 | 0.879 ± 0.010 | 0.844 ± 0.013 |
2 ) Impact of the K for the ChebyNet
K | Accuracy | F1 Score |
---|---|---|
0 | 0.512 ± 0.045 | 0.465 ± 0.086 |
1 | 0.879 ± 0.007 | 0.845 ± 0.009 |
2 | 0.834 ± 0.018 | 0.792 ± 0.020 |
ChebyNet(snet-lnet)-sfDLN is used for experiments given below. ChebyNet- sfDLN - I refers to the sfDLN trained using inverted (alternative) hypothesis of decreasing discrepancy.
1 ) ADD-MCI Classification
Model | Accuracy | F1 Score |
---|---|---|
ChebyNet-sfDLN-I | 0.655 ± 0.023 | 0.510 ± 0.046 |
ChebyNet-sfDLN | 0.712 ± 0.027 | 0.636 ± 0.040 |
2 ) MCI-SCI Classification
Model | Accuracy | F1 Score |
---|---|---|
ChebyNet-sfDLN-I | 0.520 ± 0.036 | 0.458 ± 0.040 |
ChebyNet-sfDLN | 0.545 ± 0.029 | 0.478 ± 0.027 |