Skip to content
/ wcde Public

Package to download data from the Wittgenstein Centre Human Capital Data Explorer into R

Notifications You must be signed in to change notification settings

guyabel/wcde

Repository files navigation

wcde

CRAN status CRAN RStudio mirror downloads Lifecycle: experimental R-CMD-check

Download data from the Wittgenstein Centre for Demography and Human Capital Data Explorer into R

See the pkgdown site for full details.

Installation

You can install the released version of wcde from CRAN with:

install.packages("wcde")

Install the developmental version with:

library(devtools)
install_github("guyabel/wcde", ref = "main")

Example

Download data based on a indicator, scenario and country code:

library(wcde)
#> Suggested citation for data:
#> Wittgenstein Centre for Demography and Global Human Capital (WIC) Wittgenstein Centre Data Explorer. Version 3.0 (Beta), 2023

# SSP2 education specific tfr for Austria
get_wcde(indicator = "etfr", country_name = "Austria")
#> # A tibble: 96 × 6
#>    scenario name    country_code education          period     etfr
#>       <dbl> <chr>          <dbl> <chr>              <chr>     <dbl>
#>  1        2 Austria           40 No Education       2020-2025   1.7
#>  2        2 Austria           40 Incomplete Primary 2020-2025   1.7
#>  3        2 Austria           40 Primary            2020-2025   1.7
#>  4        2 Austria           40 Lower Secondary    2020-2025   1.7
#>  5        2 Austria           40 Upper Secondary    2020-2025   1.5
#>  6        2 Austria           40 Post Secondary     2020-2025   1.3
#>  7        2 Austria           40 No Education       2025-2030   1.7
#>  8        2 Austria           40 Incomplete Primary 2025-2030   1.7
#>  9        2 Austria           40 Primary            2025-2030   1.7
#> 10        2 Austria           40 Lower Secondary    2025-2030   1.7
#> # … with 86 more rows

# SSP2 education specific population sizes for Iran and Kenya
get_wcde(indicator = "pop", country_code = c(364, 404), pop_edu = "four")
#> # A tibble: 170 × 6
#>    scenario name                       country_code  year education         pop
#>       <dbl> <fct>                             <dbl> <dbl> <fct>           <dbl>
#>  1        2 Iran (Islamic Republic of)          364  2020 Under 15       20934.
#>  2        2 Iran (Islamic Republic of)          364  2020 No Education    8397.
#>  3        2 Iran (Islamic Republic of)          364  2020 Primary        14412.
#>  4        2 Iran (Islamic Republic of)          364  2020 Secondary      32781.
#>  5        2 Iran (Islamic Republic of)          364  2020 Post Secondary 10465.
#>  6        2 Iran (Islamic Republic of)          364  2025 Under 15       20522 
#>  7        2 Iran (Islamic Republic of)          364  2025 No Education    7559.
#>  8        2 Iran (Islamic Republic of)          364  2025 Primary        14236.
#>  9        2 Iran (Islamic Republic of)          364  2025 Secondary      36161.
#> 10        2 Iran (Islamic Republic of)          364  2025 Post Secondary 12214.
#> # … with 160 more rows

# SSP1, 2 and 3 gender gaps in educational attainment (15+) for all countries
get_wcde(indicator = "ggapedu15", scenario = 1:3)
#> # A tibble: 69,768 × 6
#>    scenario name                     country_code  year education    ggapedu15
#>       <int> <chr>                           <dbl> <dbl> <chr>            <dbl>
#>  1        1 Bulgaria                          100  2020 No Education      -0.4
#>  2        1 Myanmar                           104  2020 No Education      -3.4
#>  3        1 Burundi                           108  2020 No Education      12.2
#>  4        1 Belarus                           112  2020 No Education      -0.1
#>  5        1 Cambodia                          116  2020 No Education      -9.2
#>  6        1 Algeria                            12  2020 No Education     -14.1
#>  7        1 Cameroon                          120  2020 No Education      -9.2
#>  8        1 Canada                            124  2020 No Education       0  
#>  9        1 Cape Verde                        132  2020 No Education       1.8
#> 10        1 Central African Republic          140  2020 No Education     -26  
#> # … with 69,758 more rows

Vignette

The vignette provides many more examples on how to use the package to download data and produce plots from the Wittgenstein Centre Human Capital Data Explorer.

About

Package to download data from the Wittgenstein Centre Human Capital Data Explorer into R

Topics

Resources

Stars

Watchers

Forks

Languages