This is the official implementation of the paper " ASCON: Anatomy-aware Supervised Contrastive Learning Framework for Low-dose CT Denoising" in 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). The pre-print version can be found in arxiv; camera-ready version will be soon released.
Sep, 2023: initial commit.
Dec, 2023: update data proprocessing file: /data/data_preprocessing.ipynb.
The 2016 AAPM-Mayo dataset can be downloaded from: CT Clinical Innovation Center (B30 kernel)
The 2020 AAPM-Mayo dataset can be downloaded from: cancer imaging archive
Mayo2016_2d/
|--train/
|--quarter_1mm/
train_quarter_00001.npy
train_quarter_00002.npy
train_quarter_00003.npy
...
|--full_1mm/
train_full_00001.npy
train_full_00002.npy
train_full_00003.npy
...
|--test/
|--quarter_1mm
|--full_1mm
- Linux Platform
- torch==1.12.1+cu113 # depends on the CUDA version of your machine
- torchvision==0.13.1+cu113
- Python==3.8.0
- numpy==1.22.3
Training
python train.py --name ASCON(experiment_name) --model ASCON --netG ESAU --dataroot /data/zhchen/Mayo2016_2d(path to images) --nce_layers 1,4 --layer_weight 1,1 --num_patches 32,512 --k_size 3,7 --lr 0.0002 --gpu_ids 6,7 --print_freq 25 --batch_size 8 --lr_policy cosine
Inference & testing
python test.py --name ASCON(experiment_name) --model ASCON --netG ESAU --results_dir test_results --result_name ASCON_results(path to save image) --gpu_ids 6 --batch_size 1 --eval
Please refer to options files for more setting.
If you find our work and code helpful, please kindly cite the corresponding paper:
@article{chen2023ascon,
title={ASCON: Anatomy-aware Supervised Contrastive Learning Framework for Low-dose CT Denoising},
author={Chen, Zhihao and Gao, Qi and Zhang, Yi and Shan, Hongming},
journal={MCCAI 2023},
year={2023}
}