-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
# https://github.com/pytorch/vision/blob/master/torchvision/models/__init__.py | ||
import argparse | ||
import os | ||
import shutil | ||
import pdb, time | ||
from collections import OrderedDict | ||
|
||
import torch | ||
import torch.nn as nn | ||
from torch.autograd import Variable | ||
import torch.nn.parallel | ||
import torch.backends.cudnn as cudnn | ||
import torch.optim | ||
import torch.utils.data | ||
import torchvision.transforms as transforms | ||
import torchvision.datasets as datasets | ||
# from utils import convert_secs2time, time_string, time_file_str | ||
import models | ||
import numpy as np | ||
|
||
model_names = sorted(name for name in models.__dict__ | ||
if name.islower() and not name.startswith("__") | ||
and callable(models.__dict__[name])) | ||
|
||
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') | ||
parser.add_argument('data', metavar='DIR', help='path to dataset') | ||
parser.add_argument('--save_dir', type=str, default='./', help='Folder to save checkpoints and log.') | ||
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18', choices=model_names, | ||
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') | ||
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', | ||
help='number of data loading workers (default: 4)') | ||
parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') | ||
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') | ||
parser.add_argument('--print-freq', '-p', default=5, type=int, metavar='N', help='print frequency (default: 100)') | ||
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') | ||
# compress rate | ||
parser.add_argument('--rate', type=float, default=0.9, help='compress rate of model') | ||
parser.add_argument('--epoch_prune', type=int, default=1, help='compress layer of model') | ||
parser.add_argument('--skip_downsample', type=int, default=1, help='compress layer of model') | ||
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') | ||
parser.add_argument('--eval_small', dest='eval_small', action='store_true', help='whether a big or small model') | ||
parser.add_argument('--small_model', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') | ||
|
||
args = parser.parse_args() | ||
args.use_cuda = torch.cuda.is_available() | ||
|
||
|
||
|
||
def main(): | ||
best_prec1 = 0 | ||
|
||
if not os.path.isdir(args.save_dir): | ||
os.makedirs(args.save_dir) | ||
log = open(os.path.join(args.save_dir, 'gpu-time.{}.log'.format(args.arch)), 'w') | ||
|
||
# create model | ||
print_log("=> creating model '{}'".format(args.arch), log) | ||
model = models.__dict__[args.arch](pretrained=False) | ||
print_log("=> Model : {}".format(model), log) | ||
print_log("=> parameter : {}".format(args), log) | ||
print_log("Compress Rate: {}".format(args.rate), log) | ||
print_log("Epoch prune: {}".format(args.epoch_prune), log) | ||
print_log("Skip downsample : {}".format(args.skip_downsample), log) | ||
|
||
# optionally resume from a checkpoint | ||
if args.resume: | ||
if os.path.isfile(args.resume): | ||
print_log("=> loading checkpoint '{}'".format(args.resume), log) | ||
checkpoint = torch.load(args.resume) | ||
args.start_epoch = checkpoint['epoch'] | ||
best_prec1 = checkpoint['best_prec1'] | ||
state_dict = checkpoint['state_dict'] | ||
state_dict = remove_module_dict(state_dict) | ||
model.load_state_dict(state_dict) | ||
print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log) | ||
else: | ||
print_log("=> no checkpoint found at '{}'".format(args.resume), log) | ||
|
||
cudnn.benchmark = True | ||
|
||
# Data loading code | ||
valdir = os.path.join(args.data, 'val') | ||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]) | ||
|
||
val_loader = torch.utils.data.DataLoader( | ||
datasets.ImageFolder(valdir, transforms.Compose([ | ||
# transforms.Scale(256), | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
normalize, | ||
])), | ||
batch_size=args.batch_size, shuffle=False, | ||
num_workers=args.workers, pin_memory=True) | ||
|
||
criterion = nn.CrossEntropyLoss().cuda() | ||
|
||
if args.evaluate: | ||
print_log("eval true", log) | ||
if not args.eval_small: | ||
big_model = model.cuda() | ||
print_log('Evaluate: big model', log) | ||
print_log('big model accu: {}'.format(validate(val_loader, big_model, criterion, log)), log) | ||
else: | ||
print_log('Evaluate: small model', log) | ||
if args.small_model: | ||
if os.path.isfile(args.small_model): | ||
print_log("=> loading small model '{}'".format(args.small_model), log) | ||
small_model = torch.load(args.small_model) | ||
for x, y in zip(small_model.named_parameters(), model.named_parameters()): | ||
print_log("name of layer: {}\n\t *** small model {}\n\t *** big model {}".format(x[0], x[1].size(), | ||
y[1].size()), log) | ||
if args.use_cuda: | ||
small_model = small_model.cuda() | ||
print_log('small model accu: {}'.format(validate(val_loader, small_model, criterion, log)), log) | ||
else: | ||
print_log("=> no small model found at '{}'".format(args.small_model), log) | ||
return | ||
|
||
|
||
def validate(val_loader, model, criterion, log): | ||
batch_time = AverageMeter() | ||
losses = AverageMeter() | ||
top1 = AverageMeter() | ||
top5 = AverageMeter() | ||
|
||
# switch to evaluate mode | ||
model.eval() | ||
|
||
end = time.time() | ||
for i, (input, target) in enumerate(val_loader): | ||
# target = target.cuda(async=True) | ||
if args.use_cuda: | ||
input, target = input.cuda(), target.cuda(async=True) | ||
input_var = torch.autograd.Variable(input, volatile=True) | ||
target_var = torch.autograd.Variable(target, volatile=True) | ||
|
||
# compute output | ||
output = model(input_var) | ||
loss = criterion(output, target_var) | ||
|
||
# measure accuracy and record loss | ||
prec1, prec5 = accuracy(output.data, target, topk=(1, 5)) | ||
losses.update(loss.data[0], input.size(0)) | ||
top1.update(prec1[0], input.size(0)) | ||
top5.update(prec5[0], input.size(0)) | ||
|
||
# measure elapsed time | ||
batch_time.update(time.time() - end) | ||
end = time.time() | ||
|
||
if i % args.print_freq == 0: | ||
print_log('Test: [{0}/{1}]\t' | ||
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' | ||
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' | ||
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' | ||
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format( | ||
i, len(val_loader), batch_time=batch_time, loss=losses, | ||
top1=top1, top5=top5), log) | ||
|
||
print_log(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, | ||
error1=100 - top1.avg), log) | ||
|
||
return top1.avg | ||
|
||
|
||
def print_log(print_string, log): | ||
print("{}".format(print_string)) | ||
log.write('{}\n'.format(print_string)) | ||
log.flush() | ||
|
||
|
||
class AverageMeter(object): | ||
"""Computes and stores the average and current value""" | ||
|
||
def __init__(self): | ||
self.reset() | ||
|
||
def reset(self): | ||
self.val = 0 | ||
self.avg = 0 | ||
self.sum = 0 | ||
self.count = 0 | ||
|
||
def update(self, val, n=1): | ||
self.val = val | ||
self.sum += val * n | ||
self.count += n | ||
self.avg = self.sum / self.count | ||
|
||
|
||
def accuracy(output, target, topk=(1,)): | ||
"""Computes the precision@k for the specified values of k""" | ||
maxk = max(topk) | ||
batch_size = target.size(0) | ||
|
||
_, pred = output.topk(maxk, 1, True, True) | ||
pred = pred.t() | ||
correct = pred.eq(target.view(1, -1).expand_as(pred)) | ||
|
||
res = [] | ||
for k in topk: | ||
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) | ||
res.append(correct_k.mul_(100.0 / batch_size)) | ||
return res | ||
|
||
|
||
def remove_module_dict(state_dict): | ||
new_state_dict = OrderedDict() | ||
for k, v in state_dict.items(): | ||
name = k[7:] # remove `module.` | ||
new_state_dict[name] = v | ||
return new_state_dict | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |