Fast GPT 允许你使用自己的 openai API KEY 来快速的调用 openai 接口,包括 GPT3 及其微调方法,以及最新的 gpt3.5 接口。
复制 .env.template 成 .env.local ,填写核心参数
AXIOS_PROXY_HOST=axios代理地址,目前 openai 接口都需要走代理,本机的话就填 127.0.0.1
AXIOS_PROXY_PORT=代理端口
MONGODB_URI=mongo数据库地址
MY_MAIL=发送验证码邮箱
MAILE_CODE=邮箱秘钥(代理里设置的是QQ邮箱,不知道怎么找这个 code 的,可以百度搜"nodemailer发送邮件")
TOKEN_KEY=随便填一个,用于生成和校验 token
OPENAIKEY=openai的key
REDIS_URL=redis的地址
pnpm dev
请准备好 docker, mongo,代理, 和 nginx。 镜像走本机的代理,所以用 network=host,port 改成代理的端口,clash 一般都是 7890。
docker build -t imageName:tag .
docker push imageName:tag
# 或者直接拉镜像,见下方
# 安装docker
curl -sSL https://get.daocloud.io/docker | sh
sudo systemctl start docker
# 下载包
curl https://glados.rocks/tools/clash-linux.zip -o clash.zip
# 解压
unzip clash.zip
# 下载终端配置⽂件(改成自己配置文件路径)
curl https://update.glados-config.com/clash/98980/8f30944/70870/glados-terminal.yaml > config.yaml
# 赋予运行权限
chmod +x ./clash-linux-amd64-v1.10.0
# 记得配置端口变量:
export ALL_PROXY=socks5://127.0.0.1:7891
export http_proxy=http://127.0.0.1:7890
export https_proxy=http://127.0.0.1:7890
export HTTP_PROXY=http://127.0.0.1:7890
export HTTPS_PROXY=http://127.0.0.1:7890
# 运行脚本: 删除clash - 到 clash 目录 - 删除缓存 - 执行运行. 会生成一个 nohup.out 文件,可以看到 clash 的 logs
OLD_PROCESS=$(pgrep clash)
if [ ! -z "$OLD_PROCESS" ]; then
echo "Killing old process: $OLD_PROCESS"
kill $OLD_PROCESS
fi
sleep 2
cd **/clash
rm -f ./nohup.out || true
rm -f ./cache.db || true
nohup ./clash-linux-amd64-v1.10.0 -d ./ &
echo "Restart clash"
yml文件
version: "3.3"
services:
fast-gpt:
image: c121914yu/fast-gpt:latest
environment:
AXIOS_PROXY_HOST: 127.0.0.1
AXIOS_PROXY_PORT: 7890
MY_MAIL: [email protected]
MAILE_CODE: sdasadasfasfad
TOKEN_KEY: sssssssss
MONGODB_URI: mongodb://username:[email protected]:27017/?authSource=admin&readPreference=primary&appname=MongoDB%20Compass&ssl=false
OPENAIKEY: sk-afadfadfadfsd
REDIS_URL: redis://default:[email protected]:8100
network_mode: host
restart: always
container_name: fast-gpt
mongodb:
image: mongo:6.0.4
container_name: mongo
restart: always
environment:
- MONGO_INITDB_ROOT_USERNAME=root
- MONGO_INITDB_ROOT_PASSWORD=ROOT_1234
- MONGO_DATA_DIR=/data/db
- MONGO_LOG_DIR=/data/logs
volumes:
- /root/fastgpt/mongo/data:/data/db
- /root/fastgpt/mongo/logs:/data/logs
ports:
- 27017:27017
nginx:
image: nginx:alpine3.17
container_name: nginx
restart: always
network_mode: host
ports:
- "80:80"
volumes:
- /root/fastgpt/nginx/nginx.conf:/etc/nginx/nginx.conf:ro
redis-stack:
image: redis/redis-stack:6.2.6-v6
container_name: redis-stack
restart: unless-stopped
ports:
- "8100:6379"
- "8101:8001"
environment:
- REDIS_ARGS=--requirepass psw1234
volumes:
- /etc/localtime:/etc/localtime:ro
- /root/fastgpt/redis/redis.conf:/redis.conf
- /root/fastgpt/redis/data:/data
redis.conf
## 开启aop持久化
appendonly yes
#default: 持久化文件
appendfilename "appendonly.aof"
#default: 每秒同步一次
appendfsync everysec
nginx.conf
user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
include /etc/nginx/conf.d/*.conf;
server {
listen 80;
server_name test.com;
gzip on;
gzip_min_length 1k;
gzip_buffers 4 8k;
gzip_http_version 1.1;
gzip_comp_level 6;
gzip_vary on;
gzip_types text/plain application/x-javascript text/css application/javascript application/json application/xml;
gzip_disable "MSIE [1-6]\.";
location / {
proxy_pass http://localhost:3000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
}
redis创建索引
FT.CREATE idx:model:data:hash ON HASH PREFIX 1 model:data: SCHEMA modelId TAG userId TAG status TAG q TEXT text TEXT vector VECTOR FLAT 6 DIM 1536 DISTANCE_METRIC COSINE TYPE FLOAT32
run.sh 运行文件
#!/bin/bash
docker-compose up -d
echo "Docker Compose 重新拉取镜像完成!"
# 删除本地旧镜像
images=$(docker images --format "{{.ID}} {{.Repository}}" | grep fast-gpt)
# 将镜像 ID 和名称放入数组中
IFS=$'\n' read -rd '' -a image_array <<<"$images"
# 遍历数组并删除所有旧的镜像
for ((i=1; i<${#image_array[@]}; i++))
do
image=${image_array[$i]}
image_id=${image%% *}
docker rmi $image_id
done