tests #3538
test.yaml
on: schedule
Annotations
73 errors and 11 warnings
unit:test-312:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/Users/runner/work/holoviews/holoviews/.pixi/envs/test-312/lib/python3.12/site-packages/scipy/misc/__init__.py)
|
unit:test-312:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-312:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-312:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-312:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-312:macos-latest
Process completed with exit code 1.
|
unit:test-310:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/Users/runner/work/holoviews/holoviews/.pixi/envs/test-310/lib/python3.10/site-packages/scipy/misc/__init__.py)
|
unit:test-310:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-310:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-310:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-310:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-310:macos-latest
Process completed with exit code 1.
|
unit:test-311:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/Users/runner/work/holoviews/holoviews/.pixi/envs/test-311/lib/python3.11/site-packages/scipy/misc/__init__.py)
|
unit:test-311:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-311:macos-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-311:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:macos-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-311:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:macos-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-311:macos-latest
Process completed with exit code 1.
|
unit:test-312:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/home/runner/work/holoviews/holoviews/.pixi/envs/test-312/lib/python3.12/site-packages/scipy/misc/__init__.py)
|
unit:test-312:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-312:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-312:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-312:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-312:ubuntu-latest
Process completed with exit code 1.
|
unit:test-311:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/home/runner/work/holoviews/holoviews/.pixi/envs/test-311/lib/python3.11/site-packages/scipy/misc/__init__.py)
|
unit:test-311:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-311:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-311:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-311:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-311:ubuntu-latest
Process completed with exit code 1.
|
unit:test-310:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (/home/runner/work/holoviews/holoviews/.pixi/envs/test-310/lib/python3.10/site-packages/scipy/misc/__init__.py)
|
unit:test-310:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-310:ubuntu-latest:
examples/user_guide/11-Transforming_Elements.ipynb#L1
examples/user_guide/11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-310:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:ubuntu-latest:
examples/gallery/demos/bokeh/histogram_example.ipynb#L1
examples/gallery/demos/bokeh/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/di
|
unit:test-310:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:ubuntu-latest:
examples/gallery/demos/matplotlib/histogram_example.ipynb#L1
examples/gallery/demos/matplotlib/histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File ~/work/holoviews/holoviews/holoviews/core/layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File ~/work/holoviews/holoviews/holoviews/core/layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File ~/work/holoviews/holoviews/holoviews/core/dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._
|
unit:test-310:ubuntu-latest
Process completed with exit code 1.
|
unit:test-312:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (D:\a\holoviews\holoviews\.pixi\envs\test-312\Lib\site-packages\scipy\misc\__init__.py)
|
unit:test-312:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-312:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-312:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimensio
|
unit:test-312:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-312:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._proces
|
unit:test-312:windows-latest
Process completed with exit code 1.
|
unit:test-311:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (D:\a\holoviews\holoviews\.pixi\envs\test-311\Lib\site-packages\scipy\misc\__init__.py)
|
unit:test-311:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-311:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-311:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimensio
|
unit:test-311:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-311:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._proces
|
unit:test-311:windows-latest
Process completed with exit code 1.
|
unit:test-310:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 20
Notebook cell execution failed
Cell 20: Cell execution caused an exception
Input:
hv.output(backend='matplotlib', size=200)
from scipy.misc import ascent
stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
stairs_image
Traceback:
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
Cell In[1], line 3
1 hv.output(backend='matplotlib', size=200)
----> 3 from scipy.misc import ascent
5 stairs_image = hv.Image(ascent()[200:500, :], bounds=[0, 0, ascent().shape[1], 300], label="stairs")
6 stairs_image
ImportError: cannot import name 'ascent' from 'scipy.misc' (D:\a\holoviews\holoviews\.pixi\envs\test-310\lib\site-packages\scipy\misc\__init__.py)
|
unit:test-310:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 21
Notebook cell execution failed
Cell 21: Cell execution caused an exception
Input:
from scipy import ndimage
class image_filter(hv.Operation):
sigma = param.Number(default=5)
type_ = param.String(default="low-pass")
def _process(self, element, key=None):
xs = element.dimension_values(0, expanded=False)
ys = element.dimension_values(1, expanded=False)
# setting flat=False will preserve the matrix shape
data = element.dimension_values(2, flat=False)
if self.p.type_ == "high-pass":
new_data = data - ndimage.gaussian_filter(data, self.p.sigma)
else:
new_data = ndimage.gaussian_filter(data, self.p.sigma)
label = element.label + " ({} filtered)".format(self.p.type_)
# make an exact copy of the element with all settings, just with different data and label:
element = element.clone((xs, ys, new_data), label=label)
return element
stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
for sigma in range(0, 12, 1)}, kdims="sigma")
stairs_map.opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 26
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
Cell In[1], line 26, in <dictcomp>(.0)
23 element = element.clone((xs, ys, new_data), label=label)
24 return element
---> 26 stairs_map = hv.HoloMap({sigma: image_filter(stairs_image, sigma=sigma)
27 for sigma in range(0, 12, 1)}, kdims="sigma")
29 stairs_map.opts(framewise=True)
NameError: name 'stairs_image' is not defined
|
unit:test-310:windows-latest:
examples\user_guide\11-Transforming_Elements.ipynb#L1
examples\user_guide\11-Transforming_Elements.ipynb::Cell 22
Notebook cell execution failed
Cell 22: Cell execution caused an exception
Input:
image_filter(stairs_map, type_="high-pass").opts(framewise=True)
Traceback:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[1], line 1
----> 1 image_filter(stairs_map, type_="high-pass").opts(framewise=True)
NameError: name 'stairs_map' is not defined
|
unit:test-310:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
np.seterr(divide='ignore', invalid='ignore')
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:windows-latest:
examples\gallery\demos\bokeh\histogram_example.ipynb#L1
examples\gallery\demos\bokeh\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
layout = (norm + lognorm + gamma + beta + weibull).cols(2)
layout.opts(
opts.Curve(axiswise=True),
opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
opts.Layout(shared_axes=False))
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 layout = (norm + lognorm + gamma + beta + weibull).cols(2)
2 layout.opts(
3 opts.Curve(axiswise=True),
4 opts.Histogram(fill_color="#036564", axiswise=True, height=350, width=350, bgcolor="#E8DDCB"),
5 opts.Layout(shared_axes=False))
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self�[3
|
unit:test-310:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 1
Notebook cell execution failed
Cell 1: Cell execution caused an exception
Input:
def get_overlay(hist, x, pdf, cdf, label):
pdf = hv.Curve((x, pdf), label='PDF')
cdf = hv.Curve((x, cdf), label='CDF')
return (hv.Histogram(hist, vdims='P(r)') * pdf * cdf).relabel(label)
label = "Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.normal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(-2, 2, 1000)
pdf = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-(x-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((x-mu)/np.sqrt(2*sigma**2)))/2
norm = get_overlay(hist, x, pdf, cdf, label)
np.seterr(divide='ignore', invalid='ignore')
label = "Log Normal Distribution (μ=0, σ=0.5)"
mu, sigma = 0, 0.5
measured = np.random.lognormal(mu, sigma, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8.0, 1000)
pdf = 1/(x* sigma * np.sqrt(2*np.pi)) * np.exp(-(np.log(x)-mu)**2 / (2*sigma**2))
cdf = (1+scipy.special.erf((np.log(x)-mu)/(np.sqrt(2)*sigma)))/2
lognorm = get_overlay(hist, x, pdf, cdf, label)
label = "Gamma Distribution (k=1, θ=2)"
k, theta = 1.0, 2.0
measured = np.random.gamma(k, theta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 20.0, 1000)
pdf = x**(k-1) * np.exp(-x/theta) / (theta**k * scipy.special.gamma(k))
cdf = scipy.special.gammainc(k, x/theta) / scipy.special.gamma(k)
gamma = get_overlay(hist, x, pdf, cdf, label)
label = "Beta Distribution (α=2, β=2)"
alpha, beta = 2.0, 2.0
measured = np.random.beta(alpha, beta, 1000)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 1, 1000)
pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
cdf = scipy.special.btdtr(alpha, beta, x)
beta = get_overlay(hist, x, pdf, cdf, label)
label = "Weibull Distribution (λ=1, k=1.25)"
lam, k = 1, 1.25
measured = lam*(-np.log(np.random.uniform(0, 1, 1000)))**(1/k)
hist = np.histogram(measured, density=True, bins=50)
x = np.linspace(0, 8, 1000)
pdf = (k/lam)*(x/lam)**(k-1) * np.exp(-(x/lam)**k)
cdf = 1 - np.exp(-(x/lam)**k)
weibull = get_overlay(hist, x, pdf, cdf, label)
Traceback:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[1], line 52
50 x = np.linspace(0, 1, 1000)
51 pdf = x**(alpha-1) * (1-x)**(beta-1) / scipy.special.beta(alpha, beta)
---> 52 cdf = scipy.special.btdtr(alpha, beta, x)
53 beta = get_overlay(hist, x, pdf, cdf, label)
56 label = "Weibull Distribution (λ=1, k=1.25)"
AttributeError: module 'scipy.special' has no attribute 'btdtr'
|
unit:test-310:windows-latest:
examples\gallery\demos\matplotlib\histogram_example.ipynb#L1
examples\gallery\demos\matplotlib\histogram_example.ipynb::Cell 2
Notebook cell execution failed
Cell 2: Cell execution caused an exception
Input:
(norm + lognorm + gamma + beta + weibull).opts(
opts.Curve(axiswise=True),
opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
opts.Layout(hspace=0.2)).cols(2)
Traceback:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[1], line 1
----> 1 (norm + lognorm + gamma + beta + weibull).opts(
2 opts.Curve(axiswise=True),
3 opts.Histogram(facecolor="#036564", axiswise=True, bgcolor="#E8DDCB"),
4 opts.Layout(hspace=0.2)).cols(2)
File D:\a\holoviews\holoviews\holoviews\core\layout.py:30, in Layoutable.__add__(x, y)
24 raise TypeError(f"unsupported operand type(s) for +: {x.__class__.__name__} and {y.__class__.__name__}. "
25 "If you are trying to use a reduction like `sum(elements)` "
26 "to combine a list of elements, we recommend you use "
27 "`Layout(elements)` (and similarly `Overlay(elements)` for "
28 "making an overlay from a list) instead.")
29 try:
---> 30 return Layout([x, y])
31 except NotImplementedError:
32 return NotImplemented
File D:\a\holoviews\holoviews\holoviews\core\layout.py:442, in Layout.__init__(self, items, identifier, parent, **kwargs)
440 def __init__(self, items=None, identifier=None, parent=None, **kwargs):
441 self.__dict__['_max_cols'] = 4
--> 442 super().__init__(items, identifier, parent, **kwargs)
File D:\a\holoviews\holoviews\holoviews\core\dimension.py:1313, in ViewableTree.__init__(self, items, identifier, parent, **kwargs)
1310 items = self._process_items(items)
1311 params = {p: kwargs.pop(p) for p in [*�[38;5;
|
unit:test-310:windows-latest
Process completed with exit code 1.
|
result:test
Process completed with exit code 1.
|
Setup workflow
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
Setup workflow
'before' field is missing in event payload - changes will be detected from last commit
|
Pixi lock
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
Run pre-commit
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
core:test-core:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
ui:test-ui:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
unit:test-312:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
unit:test-39:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
unit:test-311:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
unit:test-310:ubuntu-latest
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
result:test
ubuntu-latest pipelines will use ubuntu-24.04 soon. For more details, see https://github.com/actions/runner-images/issues/10636
|
Artifacts
Produced during runtime
Name | Size | |
---|---|---|
pixi-lock
|
306 KB |
|