bom
: Tools to Identify and Work with Byte Order Marks
Byte order marks (BOM) appear at the beginning of a file or buffer and provide information about the encoding of the contents. R provides facilities to work with files and connections with BOMs but there are situatons where these facilities are not sufficient. Tools are provided to identify the presence and type of byte order marks in files and R objects as well as remove them.
The following functions are implemented:
file_bom_type
: Get BOM type (file)file_has_bom
: Test if a file has a BOMraw_bom_type
: Get BOM type (raw vector)raw_has_bom
: Test if a raw vector has a BOM
- Convert to S3 methods
- BOM removal functions
- Mechanism to return a
connection
sans BOM or identify there is a BOM
devtools::install_git("https://gitlab.com/hrbrmstr/bom.git")
options(width=120)
There are some basic examples in the Usage section, but this may be a better illustration. Say you have a CSV file:
fil <- system.file("examples", "stop_times.txt", package="bom")
And, say you want to read it in with a more modern CSV reader:
library(readr)
df <- read_csv(fil)
## Parsed with column specification:
## cols(
## `trip_id` = col_integer(),
## arrival_time = col_time(format = ""),
## departure_time = col_time(format = ""),
## stop_id = col_integer(),
## stop_sequence = col_integer(),
## pickup_type = col_integer(),
## drop_off_type = col_integer()
## )
Let's look at that file:
print(df, n=1)
## # A tibble: 64,827 × 7
## `trip_id` arrival_time departure_time stop_id stop_sequence pickup_type drop_off_type
## <int> <time> <time> <int> <int> <int> <int>
## 1 50000 29700 secs 29700 secs 120001 41 1 0
## # ... with 6.483e+04 more rows
Hrm…why are those backticks around trip_id
? Isn't it just a regular string?
print(colnames(df)[1])
## [1] "trip_id"
It sure looks that way, but looks can be deceiving:
print(charToRaw(colnames(df)[1]))
## [1] ef bb bf 74 72 69 70 5f 69 64
Those strange characters at the beginning are a byte order mark (BOM). We can test for it being there and work around it:
library(bom)
if (file_has_bom(fil)) {
n <- switch(file_bom_type(fil), `UTF-8`=3, 2)
df <- read_csv(readBin(fil, "raw", file.size(fil))[-(1:n)])
}
## Parsed with column specification:
## cols(
## trip_id = col_integer(),
## arrival_time = col_time(format = ""),
## departure_time = col_time(format = ""),
## stop_id = col_integer(),
## stop_sequence = col_integer(),
## pickup_type = col_integer(),
## drop_off_type = col_integer()
## )
print(df, n=1)
## # A tibble: 64,827 × 7
## trip_id arrival_time departure_time stop_id stop_sequence pickup_type drop_off_type
## <int> <time> <time> <int> <int> <int> <int>
## 1 50000 29700 secs 29700 secs 120001 41 1 0
## # ... with 6.483e+04 more rows
charToRaw(colnames(df)[1])
## [1] 74 72 69 70 5f 69 64
Note that the built-in read.csv()
can be used with encoding="UTF-8-BOM"
and you can even use that encoding on non-binary connections, but you end up having to type convert and tibble convert that object so you're basically rewriting (badly) readr::read_csv()
.
library(bom)
# current verison
packageVersion("bom")
## [1] '0.1.0'
file_has_bom(system.file("examples", "stops.txt", package="bom"))
## [1] FALSE
file_has_bom(system.file("examples", "stop_times.txt", package="bom"))
## [1] TRUE
raw_has_bom(readBin(system.file("examples", "stop_times.txt", package="bom"), "raw", 4))
## [1] TRUE
file_bom_type(system.file("examples", "stops.txt", package="bom"))
## [1] NA
file_bom_type(system.file("examples", "stop_times.txt", package="bom"))
## [1] "UTF-8"
raw_bom_type(readBin(system.file("examples", "stop_times.txt", package="bom"), "raw", 4))
## [1] "UTF-8"
library(bom)
library(testthat)
date()
## [1] "Sat Oct 1 09:26:55 2016"
test_dir("tests/")
## testthat results ========================================================================================================
## OK: 6 SKIPPED: 0 FAILED: 0
##
## DONE ===================================================================================================================