Python codes that support the manuscript "Anthropogenic changes in atmospheric circulation patterns conducive to summer hot extremes in the Northern Hemisphere"
by Zeqin Huang, Xuezhi Tan*, Thian Yew Gan, Bingjun Liu*, Xiaohong Chen
We analyze thermodynamic and dynamic responses of hot extremes to anthropogenic changes in atmospheric circulation patterns. Changes in atmospheric teleconnection patterns under various forcings are interpreted by the self-organizing maps (a python package, MiniSom is applied). Detection and attribution analyses are performed through the regularized optimal fingerprinting and the Ribes' attribution method.
|--HWdna_2022
| |--proc_scripts
| |--data_preproc
| |--README.md
| |--Figures
| |--Notebooks
| |--attribution_data
Preprocessing codes for the raw datasets
|--data_preproc
| |--MIROC6_mx2t_preproc.py
| |--IPSL-CM6A-LR_hgt_preproc_500hpa_piControl.py
| |--MRI-ESM2-0_hgt_trend_1979-2014.py
| |--era5_mx2t_preproc.py
| |--IPSL-CM6A-LR_hgt_trend_1979-2014.py
| |--MRI-ESM2-0_mx2t_trend_1979-2014.py
| |--IPSL-CM6A-LR_mx2t_trend_1979-2014.py
| |--MRI-ESM2-0_hgt_preproc_500hpa.py
| |--HadGEM-GC31-LL_hgt_trend_1979-2014.py
| |--ncep_hgt_preproc_500hpa.py
| |--CanESM5_hgt_preproc_500hpa.py
| |--era5_hgt_preproc_500hpa.py
| |--HadGEM-GC31-LL_hgt_preproc_500hpa.py
| |--CanESM5_hgt_trend_1979-2014.py
| |--ncep_preproc_dealwith_2008.py
| |--ncep_tmax_preproc.py
| |--CanESM5_mx2t_trend_1979-2014.py
| |--HadGEM-GC31-LL_hgt_preproc_500hpa_piControl.py
| |--MIROC6_hgt_preproc_500hpa_piControl.py
| |--CanESM5_hgt_preproc_500hpa_piControl.py
| |--MIROC6_hgt_trend_1979-2014.py
| |--ncep_hgt_preproc_200hpa.py
| |--ACCESS-ESM1-5_hgt_preproc_500hpa.py
| |--IPSL-CM6A-LR_hgt_preproc_500hpa.py
| |--MIROC6_hgt_preproc_500hpa.py
| |--MRI-ESM2-0_hgt_preproc_500hpa_piControl.py
| |--era5_hgt_preproc_200hpa.py
| |--HadGEM-GC31-LL_mx2t_trend_1979-2014.py
| |--MIROC6_mx2t_trend_1979-2014.py
Codes for analyses
|--proc_scripts
| |--calculate_hot_extreme_occur_WNA.py
| |--determine_winner_for_forcings_relative_to_reanalyses_mean_SOM.py
| |--hgt_tmax_regional_variation.py
| |--concat_hgt_of_forcings_for_SOM.py
| |--calculate_hot_extreme_occur_all_pattern_yearly_piControl.py
| |--calculate_500hpa_GPH_for_patterns_under_forcings.py
| |--calculate_hgt_yearly_for_DNA_piControl.py
| |--calculate_surface_Tmax_historical_average.py
| |--calculate_hot_extreme_occur_trend_sig_concat.py
| |--calculate_tmax_historical_seasonal_cycle_threshold.py
| |--calculate_hot_extreme_occur_all_pattern_yearly.py
| |--som_winner_pattern_historical_nativegrid.py
| |--calculate_surface_Tmax_for_patterns_under_forcings.py
| |--calculate_hgt_yearly_for_DNA.py
| |--calculate_hot_extreme_occur_EAS.py
| |--hot_extreme_per_pattern_occur_trend_concat.py
| |--determine_winner_for_historical_relative_to_reanalyses_mean_SOM.py
| |--calculate_500hpa_GPH_historical_average.py
| |--calculate_hgt_historical_seasonal_cycle.py
| |--calculate_hot_extreme_occur_reanalyses.py
| |--calculate_hot_extreme_occur_EU.py
Jupyter notebooks for analyses and visualization
|--Notebooks
| |--Optimal_fingerprinting_GPH.ipynb
| |--Fig1_hgt_trend_and_variation.ipynb
| |--Fig2_target_patterns_and_occurrence_under_forcings.ipynb
| |--Fig3_trends_circulation_pattern_and_hot_extreme.ipynb
| |--Fig4_detection_and_attribution_of_hot_extreme.ipynb
| |--Fig5_future_changes_in_patterns_and_hot_extremes.ipynb
| |--FigS1_best_grid_compare.ipynb
| |--FigS2_Trends_of_JJA_GPH_and_Tmax_for_different_forcings.ipynb
| |--FigS3-5_circulation_patterns_for_individual_reanalysis.ipynb
| |--FigS6-11_trends_of_patterns_and_hot_extreme_for_each_subregions.ipynb
| |--FigS12_circulation_anomalies_under_extreme_pattern.ipynb
| |--FigS13_detection_and_attribution_for_reanalyses.ipynb
| |--FigS14_partitioned_trends_in_hot_extreme.ipynb
Rendered figures
|--Figures
| |--Fig1_changes_in_GPH_and_associated_hot_extreme.pdf
| |--Fig2_distribution_patt_occur_external_forcing.pdf
| |--Fig3_changes_in_pattern_occurrence_and_associated_hot_extreme.pdf
| |--Fig4_distribution_patt_occur_external_forcing_GPH.pdf
| |--Fig5_future_changes_in_pattern_occurrence_and_associated_hot_extreme.pdf
| |--FigS1_best_grid_selected_for_SOM_analysis.pdf
| |--FigS2_trends_in_circulation_patterns_and_hot_extreme_under_all_forcings.pdf
| |--FigS3_circulation_patterns_categorization_era5.pdf
| |--FigS4_circulation_patterns_categorization_jra55.pdf
| |--FigS5_circulation_patterns_categorization_ncep2.pdf
| |--FigS6_pattern_trend_EU.pdf
| |--FigS7_hot_extreme_trend_EU.pdf
| |--FigS8_pattern_trend_EAS.pdf
| |--FigS9_hot_extreme_trend_EAS.pdf
| |--FigS10_pattern_trend_WNA.pdf
| |--FigS11_hot_extreme_trend_WNA.pdf
| |--FigS12_circulation_anomalies_under_external_forcings.pdf
| |--FigS13_detection_and_attribution_for_reanalysis_using_ROF_Ribes.pdf
| |--FigS14_partitioned_trends_in_hot_extreme.pdf