Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fixed segfault when loading no weights exllama v2 #105

Merged
merged 1 commit into from
Jan 5, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 32 additions & 12 deletions optimum_benchmark/backends/pytorch/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@

import torch
from datasets import Dataset
from safetensors.torch import save_model
from safetensors.torch import save_file
from transformers import TrainerCallback, TrainerState
from transformers.utils import ModelOutput
from transformers.utils.logging import set_verbosity_error
Expand Down Expand Up @@ -78,6 +78,8 @@ def configure(self, config: PyTorchConfig) -> None:
self.quantization_config = None

# Load model
if self.config.no_weights and self.is_diffusion_pipeline():
raise ValueError("Diffusion Pipelines are not supported with no_weights=True")
if self.config.no_weights:
LOGGER.info("\t+ Loading model with no weights")
self.load_model_with_no_weights()
Expand Down Expand Up @@ -161,7 +163,7 @@ def load_model_from_pretrained(self) -> None:
**self.hub_kwargs,
)
elif self.is_gptq_quantized() or self.is_awq_quantized():
LOGGER.info("\t+ Loading GPTQ quantized model")
LOGGER.info("\t+ Loading quantized model")
self.pretrained_model = self.automodel_class.from_pretrained(
pretrained_model_name_or_path=self.model,
# for gptq, we need to specify the device_map to either auto
Expand All @@ -172,6 +174,7 @@ def load_model_from_pretrained(self) -> None:
**self.automodel_kwargs,
**self.hub_kwargs,
)
print(torch.cuda.max_memory_allocated())
elif self.config.device_map is not None:
LOGGER.info(f"\t+ Loading model with device map: {self.config.device_map}")
self.pretrained_model = self.automodel_class.from_pretrained(
Expand All @@ -193,31 +196,40 @@ def load_model_from_pretrained(self) -> None:
def load_model_with_no_weights(self) -> None:
self.tmp_dir = TemporaryDirectory()

if self.is_diffusion_pipeline():
raise ValueError("Diffusion pipelines are not supported with no_weights=True")

original_model = self.model
no_weights_model = os.path.join(self.tmp_dir.name, "no_weights")

LOGGER.info("\t+ Creating no weights model directory")
os.makedirs(no_weights_model, exist_ok=True)
if not os.path.exists(no_weights_model):
os.makedirs(no_weights_model)

if self.is_quantized():
# so that from_pretrained acts as if the model is quantized
# tricking from_pretrained to load the model as if it was quantized
self.pretrained_config.quantization_config = self.quantization_config.to_dict()

LOGGER.info(f"\t+ Saving pretrained config to {no_weights_model}")
self.pretrained_config.save_pretrained(save_directory=no_weights_model)

if self.pretrained_processor is not None:
LOGGER.info(f"\t+ Saving pretrained processor to {no_weights_model}")
self.pretrained_processor.save_pretrained(save_directory=no_weights_model)
LOGGER.info(f"\t+ Creating no weights model to {no_weights_model}")
state_dict = torch.nn.Linear(1, 1).state_dict()

if self.is_exllamav2():
# for exllamav2 we need to add g_idx to the state_dict
LOGGER.info("\t+ Loading meta model")
with torch.device("meta"):
meta_model = self.automodel_class.from_config(self.pretrained_config)

LOGGER.info("\t+ Setting g_idx for ExllamaV2")
for name, module in meta_model.named_modules():
# loading to exllama v2's QuantLinear creates g_idx with bad values
if hasattr(module, "in_features"):
state_dict[name + ".g_idx"] = torch.ones((module.in_features,), dtype=torch.int32)

LOGGER.info(f"\t+ Saving no weights model to {no_weights_model}")
save_model(
save_file(
filename=os.path.join(no_weights_model, "model.safetensors"),
model=torch.nn.Linear(1, 1),
metadata={"format": "pt"},
tensors=state_dict,
)

LOGGER.info("\t+ Loading no weights model")
Expand Down Expand Up @@ -282,6 +294,14 @@ def is_awq_quantized(self) -> bool:
and self.pretrained_config.quantization_config.get("quant_method", None) == "awq"
)

def is_exllamav2(self) -> bool:
return (
self.is_quantized()
and self.is_gptq_quantized()
and "exllama_config" in self.config.quantization_config
and self.config.quantization_config["exllama_config"]["version"] == 2
)

@property
def automodel_kwargs(self) -> Dict[str, Any]:
kwargs = {}
Expand Down
Loading