Skip to content

Commit

Permalink
refactor: Improve Spartan SNARK polynomial computations and evaluations
Browse files Browse the repository at this point in the history
This gathers the changes to the pre-processing SNARK excerpted from the Supernova implementation in PR microsoft#283.
The main changes extracted here are the introduction of the masked eq polynomial (and its use fixing [this issue](https://hackmd.io/@adr1anh/Sy08YaVBa)), additional sum-check tooling, removal of two calls to evaluation argument.

Main reference Arecibo PRs:
- argumentcomputer/arecibo#106
- argumentcomputer/arecibo#131
- argumentcomputer/arecibo#174
- argumentcomputer/arecibo#182

- Enhancement of polynomial related code in Spartan protocol including new polynomial types, modified existing types, better evaluation methods, and improved polynomial operations.
- Introduction of `squares` function and change in the generation of `t_pow` in Spartan.
- Addition of a new polynomial type through `MaskedEqPolynomial` with methods for its creation and evaluation.
- Enhancements in `UniPoly` struct by addition of `PartialEq`, and `Eq` traits.
- Improvements in `snark.rs` for proving and verifying batch evaluation claims, leveraging `gamma` and `rho` for random linear combinations, and optimizing various variable computations.
- Updates in `multilinear.rs` with refactoring, optimization, error handling, and supplementing unit tests.
- Refactor in `spartan/mod.rs` with import updates, function overhauls, struct visibility changes, and asynchronous operations for efficient calculations.
- Additions and amendments in `sumcheck.rs` for batch verification, handling of vectors of claims, handling of cubic bounds with additive terms, visibility adjustments, and typo fixes.
- Modifications in `eq.rs` including a debug derive for `EqPolynomial`, enhanced visibility of `r` vector, provision of `evals_from_points` for enhanced evaluation, and addition of `FromIterator` implementation.

Co-authored-by: porcuquine <[email protected]>
Co-authored-by: Matej Penciak <[email protected]>
Co-authored-by: Adrian Hamelink <[email protected]>
  • Loading branch information
4 people committed Jan 17, 2024
1 parent 48887f8 commit ac0a9e8
Show file tree
Hide file tree
Showing 10 changed files with 835 additions and 361 deletions.
182 changes: 143 additions & 39 deletions src/spartan/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -5,24 +5,29 @@
//! We also provide direct.rs that allows proving a step circuit directly with either of the two SNARKs.
//!
//! In polynomial.rs we also provide foundational types and functions for manipulating multilinear polynomials.
pub mod direct;
#[macro_use]
mod macros;
pub mod direct;
pub(crate) mod math;
pub mod polys;
pub mod ppsnark;
pub mod snark;
mod sumcheck;

use crate::{traits::Engine, Commitment};
use crate::{
r1cs::{R1CSShape, SparseMatrix},
traits::Engine,
Commitment,
};
use ff::Field;
use itertools::Itertools as _;
use polys::multilinear::SparsePolynomial;
use rayon::{iter::IntoParallelRefIterator, prelude::*};

// Creates a vector of the first `n` powers of `s`.
fn powers<E: Engine>(s: &E::Scalar, n: usize) -> Vec<E::Scalar> {
assert!(n >= 1);
let mut powers = Vec::new();
let mut powers = Vec::with_capacity(n);
powers.push(E::Scalar::ONE);
for i in 1..n {
powers.push(powers[i - 1] * s);
Expand All @@ -31,35 +36,60 @@ fn powers<E: Engine>(s: &E::Scalar, n: usize) -> Vec<E::Scalar> {
}

/// A type that holds a witness to a polynomial evaluation instance
pub struct PolyEvalWitness<E: Engine> {
struct PolyEvalWitness<E: Engine> {
p: Vec<E::Scalar>, // polynomial
}

impl<E: Engine> PolyEvalWitness<E> {
fn pad(mut W: Vec<PolyEvalWitness<E>>) -> Vec<PolyEvalWitness<E>> {
// determine the maximum size
if let Some(n) = W.iter().map(|w| w.p.len()).max() {
W.iter_mut().for_each(|w| {
w.p.resize(n, E::Scalar::ZERO);
});
W
} else {
Vec::new()
}
}
/// Given [Pᵢ] and s, compute P = ∑ᵢ sⁱ⋅Pᵢ
///
/// # Details
///
/// We allow the input polynomials to have different sizes, and interpret smaller ones as
/// being padded with 0 to the maximum size of all polynomials.
fn batch_diff_size(W: Vec<PolyEvalWitness<E>>, s: E::Scalar) -> PolyEvalWitness<E> {
let powers = powers::<E>(&s, W.len());

let size_max = W.iter().map(|w| w.p.len()).max().unwrap();
// Scale the input polynomials by the power of s
let p = W
.into_par_iter()
.zip_eq(powers.par_iter())
.map(|(mut w, s)| {
if *s != E::Scalar::ONE {
w.p.par_iter_mut().for_each(|e| *e *= s);
}
w.p
})
.reduce(
|| vec![E::Scalar::ZERO; size_max],
|left, right| {
// Sum into the largest polynomial
let (mut big, small) = if left.len() > right.len() {
(left, right)
} else {
(right, left)
};

big
.par_iter_mut()
.zip(small.par_iter())
.for_each(|(b, s)| *b += s);

big
},
);

fn weighted_sum(W: &[PolyEvalWitness<E>], s: &[E::Scalar]) -> PolyEvalWitness<E> {
assert_eq!(W.len(), s.len());
let mut p = vec![E::Scalar::ZERO; W[0].p.len()];
for i in 0..W.len() {
for j in 0..W[i].p.len() {
p[j] += W[i].p[j] * s[i]
}
}
PolyEvalWitness { p }
}

// This method panics unless all vectors in p_vec are of the same length
/// Given a set of polynomials \[Pᵢ\] and a scalar `s`, this method computes the weighted sum
/// of the polynomials, where each polynomial Pᵢ is scaled by sⁱ. The method handles polynomials
/// of different sizes by padding smaller ones with zeroes up to the size of the largest polynomial.
///
/// # Panics
///
/// This method panics if the polynomials in `p_vec` are not all of the same length.
fn batch(p_vec: &[&Vec<E::Scalar>], s: &E::Scalar) -> PolyEvalWitness<E> {
p_vec
.iter()
Expand All @@ -69,7 +99,7 @@ impl<E: Engine> PolyEvalWitness<E> {

let p = zip_with!(par_iter, (p_vec, powers_of_s), |v, weight| {
// compute the weighted sum for each vector
v.iter().map(|&x| x * weight).collect::<Vec<E::Scalar>>()
v.iter().map(|&x| x * *weight).collect::<Vec<E::Scalar>>()
})
.reduce(
|| vec![E::Scalar::ZERO; p_vec[0].len()],
Expand All @@ -84,25 +114,54 @@ impl<E: Engine> PolyEvalWitness<E> {
}

/// A type that holds a polynomial evaluation instance
pub struct PolyEvalInstance<E: Engine> {
struct PolyEvalInstance<E: Engine> {
c: Commitment<E>, // commitment to the polynomial
x: Vec<E::Scalar>, // evaluation point
e: E::Scalar, // claimed evaluation
}

impl<E: Engine> PolyEvalInstance<E> {
fn pad(U: Vec<PolyEvalInstance<E>>) -> Vec<PolyEvalInstance<E>> {
// determine the maximum size
if let Some(ell) = U.iter().map(|u| u.x.len()).max() {
U.into_iter()
.map(|mut u| {
let mut x = vec![E::Scalar::ZERO; ell - u.x.len()];
x.append(&mut u.x);
PolyEvalInstance { x, ..u }
})
.collect()
} else {
Vec::new()
fn batch_diff_size(
c_vec: &[Commitment<E>],
e_vec: &[E::Scalar],
num_vars: &[usize],
x: Vec<E::Scalar>,
s: E::Scalar,
) -> PolyEvalInstance<E> {
let num_instances = num_vars.len();
assert_eq!(c_vec.len(), num_instances);
assert_eq!(e_vec.len(), num_instances);

let num_vars_max = x.len();
let powers: Vec<E::Scalar> = powers::<E>(&s, num_instances);
// Rescale evaluations by the first Lagrange polynomial,
// so that we can check its evaluation against x
let evals_scaled = zip_with!(iter, (e_vec, num_vars), |eval, num_rounds| {
// x_lo = [ x[0] , ..., x[n-nᵢ-1] ]
// x_hi = [ x[n-nᵢ], ..., x[n] ]
let (r_lo, _r_hi) = x.split_at(num_vars_max - num_rounds);
// Compute L₀(x_lo)
let lagrange_eval = r_lo
.iter()
.map(|r| E::Scalar::ONE - r)
.product::<E::Scalar>();

// vᵢ = L₀(x_lo)⋅Pᵢ(x_hi)
lagrange_eval * eval
})
.collect::<Vec<_>>();

// C = ∑ᵢ γⁱ⋅Cᵢ
let comm_joint = zip_with!(iter, (c_vec, powers), |c, g_i| *c * *g_i)
.fold(Commitment::<E>::default(), |acc, item| acc + item);

// v = ∑ᵢ γⁱ⋅vᵢ
let eval_joint = zip_with!((evals_scaled.into_iter(), powers.iter()), |e, g_i| e * g_i).sum();

PolyEvalInstance {
c: comm_joint,
x,
e: eval_joint,
}
}

Expand All @@ -112,8 +171,13 @@ impl<E: Engine> PolyEvalInstance<E> {
e_vec: &[E::Scalar],
s: &E::Scalar,
) -> PolyEvalInstance<E> {
let powers_of_s = powers::<E>(s, c_vec.len());
let num_instances = c_vec.len();
assert_eq!(e_vec.len(), num_instances);

let powers_of_s = powers::<E>(s, num_instances);
// Weighted sum of evaluations
let e = zip_with!(par_iter, (e_vec, powers_of_s), |e, p| *e * p).sum();
// Weighted sum of commitments
let c = zip_with!(par_iter, (c_vec, powers_of_s), |c, p| *c * *p)
.reduce(Commitment::<E>::default, |acc, item| acc + item);

Expand All @@ -124,3 +188,43 @@ impl<E: Engine> PolyEvalInstance<E> {
}
}
}

/// Bounds "row" variables of (A, B, C) matrices viewed as 2d multilinear polynomials
fn compute_eval_table_sparse<E: Engine>(
S: &R1CSShape<E>,
rx: &[E::Scalar],
) -> (Vec<E::Scalar>, Vec<E::Scalar>, Vec<E::Scalar>) {
assert_eq!(rx.len(), S.num_cons);

let inner = |M: &SparseMatrix<E::Scalar>, M_evals: &mut Vec<E::Scalar>| {
for (row_idx, ptrs) in M.indptr.windows(2).enumerate() {
for (val, col_idx) in M.get_row_unchecked(ptrs.try_into().unwrap()) {
M_evals[*col_idx] += rx[row_idx] * val;
}
}
};

let (A_evals, (B_evals, C_evals)) = rayon::join(
|| {
let mut A_evals: Vec<E::Scalar> = vec![E::Scalar::ZERO; 2 * S.num_vars];
inner(&S.A, &mut A_evals);
A_evals
},
|| {
rayon::join(
|| {
let mut B_evals: Vec<E::Scalar> = vec![E::Scalar::ZERO; 2 * S.num_vars];
inner(&S.B, &mut B_evals);
B_evals
},
|| {
let mut C_evals: Vec<E::Scalar> = vec![E::Scalar::ZERO; 2 * S.num_vars];
inner(&S.C, &mut C_evals);
C_evals
},
)
},
);

(A_evals, B_evals, C_evals)
}
22 changes: 19 additions & 3 deletions src/spartan/polys/eq.rs
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,9 @@ use rayon::prelude::{IndexedParallelIterator, IntoParallelRefMutIterator, Parall
/// This polynomial evaluates to 1 if every component $x_i$ equals its corresponding $e_i$, and 0 otherwise.
///
/// For instance, for e = 6 (with a binary representation of 0b110), the vector r would be [1, 1, 0].
#[derive(Debug)]
pub struct EqPolynomial<Scalar: PrimeField> {
r: Vec<Scalar>,
pub(in crate::spartan::polys) r: Vec<Scalar>,
}

impl<Scalar: PrimeField> EqPolynomial<Scalar> {
Expand Down Expand Up @@ -43,12 +44,20 @@ impl<Scalar: PrimeField> EqPolynomial<Scalar> {
///
/// Returns a vector of Scalars, each corresponding to the polynomial evaluation at a specific point.
pub fn evals(&self) -> Vec<Scalar> {
let ell = self.r.len();
Self::evals_from_points(&self.r)
}

/// Evaluates the `EqPolynomial` from the `2^|r|` points in its domain, without creating an intermediate polynomial
/// representation.
///
/// Returns a vector of Scalars, each corresponding to the polynomial evaluation at a specific point.
pub fn evals_from_points(r: &[Scalar]) -> Vec<Scalar> {
let ell = r.len();
let mut evals: Vec<Scalar> = vec![Scalar::ZERO; (2_usize).pow(ell as u32)];
let mut size = 1;
evals[0] = Scalar::ONE;

for r in self.r.iter().rev() {
for r in r.iter().rev() {
let (evals_left, evals_right) = evals.split_at_mut(size);
let (evals_right, _) = evals_right.split_at_mut(size);

Expand All @@ -64,6 +73,13 @@ impl<Scalar: PrimeField> EqPolynomial<Scalar> {
}
}

impl<Scalar: PrimeField> FromIterator<Scalar> for EqPolynomial<Scalar> {
fn from_iter<I: IntoIterator<Item = Scalar>>(iter: I) -> Self {
let r: Vec<_> = iter.into_iter().collect();
EqPolynomial { r }
}
}

#[cfg(test)]
mod tests {
use crate::provider;
Expand Down
Loading

0 comments on commit ac0a9e8

Please sign in to comment.