Official code for CPGNet-LCF
- [2023-11-02] CPGNet-LCF achieves the 82.7 mIoU on the nuScenes LiDAR Segmentation Benchmark with the inference latency of 63 ms(PyTorch) and 20 ms(TensorRT) on a single Tesla V100 GPU.
CUDA>=10.1
torch>=1.10.0
[email protected]
[email protected]
nuscenes-devkit
cd ops_libs
python setup.py install
Please download the nuScenes dataset to the folder ./data
and the structure of the folder should look like:
./data
├── nuscenes
├── ...
├── samples/
│ ├── LIDAR_TOP/
│ │ ├── n008-2018-05-21-11-06-59-0400__LIDAR_TOP__1526915243047392.pcd.bin
│ │ ├── n008-2018-05-21-11-06-59-0400__LIDAR_TOP__1526915243547836.pcd.bin
│ │ ├── ...
│ ├── CAM_BACK/
│ │ ├── ...
│ ├── CAM_FRONT/
│ │ ├── ...
│ ├── CAM_FRONT_LEFT/
│ ├── ...
└── lidarseg/
└── v1.0-trainval
├── 0a0c9ff1674645fdab2cf6d7308b9269_lidarseg.bin
├── ...
And download the pickle file of nuScenes to the folder ./data/nuscenes
And download the model path of the image segmentation to the folder ./ckpts
cd construct_obj_bank/nusc
python3 main.py
The structure of the nusc_bank folder should look like:
./data/nuscenes
├── nusc_bank
├── bicycle
├── bicyclist
├── car
├── motorcycle
├── motorcyclist
├── other-vehicle
├── person
├── truck
bash train.sh
bash train_kd.sh
bash evaluate.sh
We sincerely thank the authors of CPGNet, SMVF for open sourcing their methods.
Any questions or suggestions are welcome!
Chaoping Tu [email protected]
Gang Zhang [email protected]