Machine_Learning_Loadmap.jpg
-
- Norm
- Inner Product
- Array
- Linear Regression with inverse array
- Gradient Descent(GD)
- Linear regression with GD
- mini batch Stochastic Gradient Descent(mini batch SGD)
- Deep Learning
- Monte Carlo Sampling
- Maximum Likelihood Estimator(MLE)
- Bayesian Theory
- Convolutional Neural Network(CNN)
- Recurrent Neural Network(RNN)
-
- Outline
- Dynamic Typing
- Object-Oriented Programming(OOP)
- Interpreter
- Variables
- Memory
- Function and Console IO
- Function
- Console in/out
- Formatting
- Conditionals and Loops
- Condition
- Loop
- Debug
- String and advanced function concept
- String
- Call by Object Reference
- Function - scoping rule
- Recursive Function
- Docstring
- PEP8
- Python data structure
- Stack
- Queue
- Tuple
- Set
- Dict
- collections
- deque
- OrderedDict
- defaultdict
- Counter
- namedtuple
- Pythonic code
- split & join
- list comprehension
- enumerate & zip
- lambda & map & reduce
- generator
- function passing arguments
- keyward arguments
- default arguments
- variable-length asterisk(*args)
- keyward-length asterisk(**kwargs)
- asterisk(unpacking a container)
- Object-Oriented Programming(OOP)
- outline
- objects in python
- OOP charactoeristics
- inheritance
- polymorphism
- visibility
- decorate
- first-class objects
- inner function
- decorator
- Module and Project
- module
- package
- virtual environment
- Outline
- Pytorch
- Operation
- Tensor
- view vs reshape
- squeeze, unsqueeze
- dot, mm, matmul
- nn.functional
- AutoGrad
- torch.nn.Module
- nn.Parameter
- Backward
- Dataset
- DataLoader
- model.save()
- checkpoints
- Monitoring Tools
- Tensorboard
- weight & biases
- Multi-GPU
- Model parallel
- Data parallel
- DataParallel
- DistributedDataParallel
- Hyperparameter Tuning
- Ray
- Troubleshooting
- Operation
- Deep Learning Basic
- Optimization
- CNN(Convolutional Neural Network)
- RNN(Recurrent Neural Network)
- Generative Model
- Machine Lreaning Project Life Cycle
- Linux & Shell Command
- Docker
- MLflow
- P Stage Start!
- Data Feeding
- Model
- Training & Inference
- More...
- Why image data need to normalization?