Skip to content

hyunkoome/CenterPointPillar

Repository files navigation

PointPillar based CenterPoint

Basis Codes: OpenPCDet and CenterPoint

Docker Environment

1. Setting Dev Environment using Docker Env

2 Preparing Datasets

3. Setting OpenPCDet.

4. Training a model.

5. Testing a model and Evaluation with Pytorch models.

6. Convert ONNX models from Pytorch models

7. Testing a model and Evaluation with TensorRT models.

8. Inference a model with TensorRT on ROS2 (Python)

9. Inference a model with TensorRT on ROS2 (C++)

------------------------------------------------------------------------------------------

TODO

  • Fixed codes.
  • Updated README.md files.
  • Refactoring Phase1: Remove all codes not related to centerpoint-pillar.
    • Remove codes not related to network models (centerpoint-pillar).
    • Remove codes not related to waymo dataset.
    • Remove codes not related to functions.
    • Remove all parameters not related to centerpoint-pillar in the config.yaml files (networks and datasets).
    • Remove duplicated parameters in the config.yaml files (networks and datasets).
    • Merge duplicated codes of header, source (c++ and cuda) for pybind and ROS.
  • Refactoring Phase2: Restructure the codes and config files.
    • Restructure all codes.
    • Re-arranged parameters and restructured on the config.yaml files of datasets and models.
    • Fix the code to create proper config.yaml when running export_onnx.py with cfg_file cfgs/waymo_models/centerpoint_pillar_inference.yaml.
  • Refactoring Phase3: Add unit test functions for python, c++, cuda.