-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpandaset_dataset.yaml
110 lines (89 loc) · 3.63 KB
/
pandaset_dataset.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
DATASET: 'PandasetDataset'
DATA_PATH: '../data/pandaset'
POINT_CLOUD_RANGE: [-70, -40, -3, 70, 40, 1] # xmin, ymin, zmin, xmax, ymax, zmax
DATA_SPLIT: {
'train': train,
'test': val
}
SEQUENCES: {
'train': ['014', '050', '079', '048', '093', '091', '063', '104', '100', '092', '012', '047', '018', '006', '099', '085', '035', '041', '052', '105', '030', '113', '002', '084', '028', '119', '044', '005', '102', '034', '077', '064', '067', '058', '019', '015', '037', '095', '120', '066', '023', '071', '117', '098', '139', '038', '116', '046', '088', '089', '040', '033', '016', '024', '122', '039', '158', '069', '124', '123', '106'], # ~60% of the sequences, randomly chosen
'val': ['045', '059', '055', '051', '020', '097', '073', '043', '003', '101', '027', '056', '011', '078', '080', '109', '042', '021', '094', '057'], # ~20% of the sequences, randomly chosen
'test': ['074', '004', '086', '062', '068', '008', '001', '110', '053', '115', '054', '065', '017', '103', '072', '013', '029', '090', '112', '149', '070', '032'] # ~20% of the sequences, randomly chosen
}
# Acquisition device to consider when loading the data
# Pandaset contains data from:
# - a pandar64 spinning lidar
# - a pandarGT forward facing lidar
# To use data from:
# - the pandar64 lidar only (default), set LIDAR_DEVICE to 0,
# - the pandarGT lidar onlu, set it to 1
# - both devices, set it to -1
LIDAR_DEVICE: 0
INFO_PATH: {
'train': [pandaset_infos_train.pkl],
'test': [pandaset_infos_val.pkl],
}
TRAINING_CATEGORIES: {
# This maps raw dataset categories with the corresponding categories used in training
# This map can be incomplete. In case a category is not present, the category
# for training is the same as the raw dataset category
'Car': 'Car',
'Pickup Truck': 'Car',
'Medium-sized Truck': 'Truck',
'Semi-truck': 'Truck',
'Towed Object': 'Other Vehicle',
'Motorcycle': 'Motorcycle',
'Other Vehicle - Construction Vehicle': 'Other Vehicle',
'Other Vehicle - Uncommon': 'Other Vehicle',
'Other Vehicle - Pedicab': 'Other Vehicle',
'Emergency Vehicle': 'Other Vehicle',
'Bus': 'Bus',
'Bicycle': 'Bicycle',
'Pedestrian': 'Pedestrian',
'Pedestrian with Object': 'Pedestrian',
'Animals - Other': 'Animal'
}
FOV_POINTS_ONLY: False
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
# gt sampling not working at the moment
- NAME: gt_sampling
USE_ROAD_PLANE: False
DB_INFO_PATH:
- pandaset_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5', 'Pedestrian:5', 'Bicycle:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:20','Pedestrian:15', 'Bicycle:15']
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-3.14159265, 3.114159265]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
POINT_FEATURE_ENCODING: {
encoding_type: absolute_coordinates_encoding,
used_feature_list: ['x', 'y', 'z', 'intensity'],
src_feature_list: ['x', 'y', 'z', 'intensity'],
}
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': False
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.05, 0.05, 0.1]
MAX_POINTS_PER_VOXEL: 5
MAX_NUMBER_OF_VOXELS: {
'train': 16000,
'test': 40000
}